• Title/Summary/Keyword: 가공모델

Search Result 960, Processing Time 0.025 seconds

Drill Wear Modelling based on Motor Current and Application to Real-time Wear Estimation (모터전류를 기초로 한 드릴 마멸 모델링과 실시간 마멸 추정)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.77-87
    • /
    • 1995
  • In-process detection of drill wear is one of the most important technoligies for automatic, unmaned machining systems. In this study, an on-line drill wear estimation model based on spindle/Z-axis motor currents generated during the drilling process is proposed. The theoretical model is obtained by integrating the drilling process model and the servomechanism model. The drilling process model describes the relationship of drill wear and drilling torque/ thrust force, whereas the servomechanism model describes the relationship of drilling torque/ thrust force applied to motor and spindle/Z-axis motor current. Evaluation tests have shown that the proposed model is a good real-time estimator for drill wear.

  • PDF

A Study on the Deep Learning-Based Defect Prediction Model Using Sensor Data of Semiconductor Equipment (반도체 설비 센서 데이터를 활용한 딥러닝 기반의 불량예측 모델에 관한 연구)

  • Ha, Seung-Jae;Lee, Won-Suk;Gu, Kyo-Yeon;Shin, Yong-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.459-462
    • /
    • 2021
  • 본 연구는 반도체 제조 공정중 발생하는 센서 데이터를 활용하여 딥러닝기반으로 불량을 예측하는 모델을 제안한다. 반도체 공장에서는 FDC((Fault Detection and Classification)라는 불량을 예측하는 시스템이 있지만, 공정의 복잡도가 높고 센서의 종류가 많아 공정 관리자가 모든 센서의 기준을 설정 및 관리하는데 한계가 있다. 이를 해결하기 위해 공정 설비의 센서 데이터를 딥러닝을 활용하여 학습시켜 센서 기준정보로 임계치를 제공하고, 가공중 발생하는 센서 데이터가 입력되면 정상 여부를 판정하는 모델을 제안한다.

Dating Abuse Evidence Collecting System using Mediapipe (Mediapipe 를 활용한 데이트 폭력 증거 확보 시스템)

  • Lee, Juwon;Kong, Seoeun;Chung, Min Gyo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.438-439
    • /
    • 2022
  • 최근 데이트 폭력 신고 건수가 급격히 증가하며 사회적 문제로 대두되고 있다. 폭력을 당하는 순간 당황하여 확실한 증거 확보가 어렵다는 점에서 착안하여 상대방이 폭력을 가하는 순간 폭력 행동을 인식하여 해당 장면을 캡처 후 저장해 증거물의 역할을 할 수 있는 시스템을 구축하였다. 시스템 구축을 위해 동작 인식 모델을 생성하였는데 데이터 수집, 가공 후 여러 모델을 비교해 가장 정확도가 높은 모델을 시스템에 적용하였다.

Structural Design of a Dental Implant (2): Test Drafting and Manufacturing (치과용 임플란트 구조설계 (2): 시험설계 및 가공제작)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • This paper is the second paper among two papers which constitute the paper about the structural design of a dental implant. This paper completed the test drafting for the structural model of the new dental implant whose structural performance was confirmed and verified through the comparative structural analysis carried out in the first paper. This paper finished the structural design of a dental implant by manufacturing the dental implant using CNC machines and so forth on the basis of the completed draft and finally by evaluating the machining condition of the dental implant. The drafting work was performed using MDT(Mechanical Desk Top). The manufacturing work was carried out using CNC machines, general purpose milling machine, and Wire EDM. The manufactured surface condition of the dental implant was evaluated and confirmed finally using an electron microscope. As a result of evaluation, a testing dental implant with very good condition was designed and manufactured.

Evaluation of press formability of pure titanium sheet (순 티탄늄 판재의 프레스 성형성 평가(제 1보))

  • Kim, Young-Suk;In, Jeong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Commercially pure titanium (CP Ti) has been actively used in plate heat exchangers due to its light weight, high specific strength, and excellent corrosion resistance. However, compared with automotive steels and aluminum alloys, there has not been much research on the plastic deformation characteristics and press formability of CP Ti sheet. In this study, the mechanical properties of CP Ti sheet are clarified in relation to press formability, including anisotropic properties and the stress-strain relation. The flow curve of the true stress-true strain relation is fitted well by the Kim-Tuan hardening equation rather than the Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet was experimentally evaluated as a criterion for press formability by punch stretching tests. Analytical predictions were also made via Hora's modified maximum force criterion. The predicted FLC with the Kim-Tuan hardening model and an appropriate yield function shows good correlation with the experimental results of the punch stretching test.

Customized Model Manufacturing for Patients with Pelvic Fracture using FDM 3D Printer (FDM 방식의 3D 프린터를 이용한 골반 골절 환자의 맞춤형 모델제작)

  • Oh, Wang-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.370-377
    • /
    • 2014
  • At present trend 3D Printing technology has been using more efficiently than conventional subtractive manufacturing method in various medical fields, in particular this technology superior in saving production time, cost and process than conventional. Especially in orthopedics, an attractive attention has been paid by adopting this technology because of improving operation, operation accuracy, and reducing the patient's pain. Though 3D printing technology has enormous applications still in some hospitals have not been using due to having the problem of technical utilization of hardware, software & chiefly financial availability and etc. In order to solve these problems by reducing the cost and time, we have used CT images in pre-operative planning by directly making the pelvic fracture model with open source DICOM viewer and STL file conversion program, assembly 3D printer of FDM wire additive manufacturing. After having the customized bone model of six patients who underwent unstable pelvic fracture surgery, we have operated our system in orthopedic section of University Hospital through the clinician. Later, we have received better reviews and comments on utilization availability, results, and precision and now our system considered to be useful in surgical planning.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

An Analytical Study on Prestrain and Shape Memory Effect of Composite Reinforced with Shape Memory Alloy (형상기억합금 강화 복합재의 사전 변형률과 형상기억 효과에 대한 이론적 고찰)

  • 이재곤;김진곤;김기대
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.54-60
    • /
    • 2004
  • A new three-dimensional model for predicting the relationship between the prestrain of the composite and the amount of phase transformation of shape memory alloy inducing shape memory effect has been proposed by using Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory. The model composite is aluminum matrix reinforced with short TiNi fiber shape memory alloy, where the matrix is work-hardening material of power-law type. The analytical results predicted by the current model show that most of the prestrain is induced by the plastic deformation of the matrix, except the small prestrain region. The strengthening mechanism of the composite by the shape memory effect should be explained by excluding its increase of yield stress due to the work-hardening effect of the matrix.

Cutting Force Prediction in Single Point Diamond Turning (정밀 선삭 가공 과정의 절삭력 예측모델)

  • 윤영식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1456-1464
    • /
    • 1993
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the dimensional tolerances in the order of 10 nm and surface roughness in the order of 1 nm are the accuracy targets to achieved today. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is one of the new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting forces. A cutting model for describing the influence of cutting conditions (cutting speed, feedrate and depth of cut), material properties of the workpiece and tool geometry has been proposed after estimating the two cutting force models-the Recht model and the Dautzenberg model. The experiments with Al-alloy workpieces, which have been carried out in order to estimate the models, show that the proposed model in this thesis is better than the two models. As the depth of cut and feedrate are increased in the operations settings (depth of cut 8-100$\mu{m}$, feedrate 8-140$\mu{m}$/rev, and cutting speed 8 m/sec), the relation of dimensionless cutting forces from experiments are similar to the proposed model. With the undeformed chip area of $30-80{\times}10^{2}$\mu{m}^2$, the experimental cutting forces accord with the force prediction.

A New Algorithm to Determine Heating Lines for Plate Forming by Line Heating Method (선상가열법에 의한 강판 가공의 가열선 결정 알고리즘)

  • Chang-Doo Jang;Sung-Choon Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.104-113
    • /
    • 1998
  • The line heating method is a popular technique used to form ship hull in shipyards. In order to promote shipbuilding productivity, some researchers have made progress in their studies on automatic fabrication system for plate forming. These researches have, however, focused on heat-induced plate deformation with particular mechanical modelings, and do not yet propose the heating paths applicable to actual plate forming process. In this paper, a new algorithm to determine heating lines is developed to simulate the line heating process. The important feature of this algorithm is that it calculates principal curvatures of deflection difference surface which represents difference between target surface and surface in fabrication. Several trials to typical surface types show its usefulness and good applicability to tactical use.

  • PDF