• Title/Summary/Keyword: 走行荷重

Search Result 242, Processing Time 0.023 seconds

Determination of radius of edge round cut of loading head for deformation strength test (변형강도 시험용 하중봉의 원형절삭반경 선정연구)

  • Park, Tae-W.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-191
    • /
    • 2008
  • This study evaluated influence of the loading head dimension on characteristics of deformation strength ($S_D$) of asphalt mixtures. Kim test and Wheel tracking (WT) test were conducted to evaluate $S_D$ characteristics with relation to WT results for various mixtures. The $S_D$ values and coefficient of variation of $S_D$ values of r=10mm were smaller than those of r=10.5mm. It was also found that $S_D$ values obtained using r=10mm loading head showed high correlations with rut parameters of WT test. It was indicated that the aggregate size and radius (r) of round cut were statistically significant variables on $S_D$ at = 0.05 level in the analysis of variance. However, in interaction of r and aggregate size showed no significance within $10{\sim}19mm$ aggregate size at the same level. Therefore, it was concluded that the diameter (D) of 40mm and the bottom edge radius (r) of 10mm was suitable dimension of loading head for deformation strength test.

  • PDF

Study on Torsion due to Automotive Body Type at Track Driving (궤적주행 시 차체 종류에 따른 비틀림에 관한 연구)

  • Choi, Youn-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because there is no suspension and differential devices at cart body, the deformation of the frame happened during kart driving affects the driving performance caused by the elastic deformation and the fatigue life of kart frame resulted from the permanent deformation. The dynamic behavior of kart caused by the torsional deformation during circular driving is the important factor of these two kinds of deformations. In order to analyze the dynamic behavior of kart at this curved section, GPS is used to trace the track of kart and the torsional stress at kart-frame has been measured with real time. The mechanical properties of kart-frames for leisure and racing are investigated through material property analysis and tensile test. Torsional stress concentration and frame distortion are investigated through stress analysis on frame on the basis of study result. The real karts for leisure and racing kart are also tested in each driving condition by using the driving analysis equipment. The driving behavior of kart at the curved section are investigated through this test. As the phenomenon of load movement due to centrifugal force at car is happened during circular driving, the torsional stress occurs at cart steel frame.

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads Considering Running Safety (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim, Jeong-il;Yang, Sin-Chu;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.299-309
    • /
    • 2006
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

Behavioral Characteristics of Precast Concrete Slab using Wheel Load Tester (윤하중 시험 차량을 활용한 프리캐스트 콘크리트 바닥판의 거동 특성)

  • Park, Seok-Soon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The main objective of this research is to present the behaviors of precast concrete slab under moving wheel loads. The simulated moving wheel tester and precast concrete slab were designed for this research. In particular, a comparative analysis between the structural analysis and the moving wheel load test was evaluated in connection parts, deformation, bedding layer of concrete slab panels. In the comparisons of the test results from static and moving wheel loads, the maximum deformations were similar. It should be noted that the deformation of panel 2 from the static loading test was larger than that of other panels, while the deformations of panels 1 and 3 were more noticeable than that of panel 2.

Ground Vibration Analysis for Light Rail Transit on Bridges (교량구간에서의 경량전철에 의한 지반진동 해석)

  • 김두기;이종재;윤정방;김두훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.71-82
    • /
    • 2000
  • Ground vibration analysis methods for Light Rail Transit(LRT) on bridges are studied. LRT loads acting on the piers are evaluated considering interactions between trains and a bridge. Two dimensional in-plane and axisymmetric wave propagations are used in ground vibration analyses, and then the results of them are compared one another. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves. Parametric studies are carried out for various train speeds, bridge types and geotechnical conditions to investigate the characteristics of ground vibrations.

  • PDF

Study of the performance improvement solution and bogie structure of center guided type monorail (중앙 안내방식의 모노레일 대차 구조와 성능 향상 방안에 관한 연구)

  • Kim, Jae-Min;Kim, Myung-Su;Kim, Hak-Soo;Ko, Hyung-Keun;Kim, Kyung-Han
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1249-1254
    • /
    • 2010
  • The bogie structure of center guided type monorail has been applied to Incheon Wolmi Eunha monorail at first in the world, and aluminum alloy material bogie is first ever introduced in Korea. Since bogie transfers vertical and horizontal loads to the track and guide rail as an essential system, its structure should have enough durability and secure excellent operation performance and ride quality. This study presents a suitable structure for center guided type monorail, a system combination method for bogie operation performance and riding quality, and a solution for better bogie frame durability.

  • PDF

Fatigue Life Estimation Method Considering Traffic Properties for Steel Highway Girder Bridge (교통특성을 고려한 강도로교의 피로수명 평가 방안)

  • Lee, Hee-Hyun;Kyung, Kab-Soo;Jeon, Jun-Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.209-218
    • /
    • 2010
  • The fatigue phenomenon, which is induced by stress accumulation due to the repeated loading of vehicles in the long term, is one of the main factors of the span of life of a steel bridge. In this paper, the effects of traffic properties on the fatigue life of ordinary short- and medium-span steel plate girder bridges that are exposed to relatively large dynamic effects are investigated. From the analysis, it was known that the fatigue life of the bridge becomes shorter with increasing traffic volume and number of large vehicles, and is affected by the weights of the vehicles. Based on the analysis results, a new parameter that can represent the traffic property that affects the fatigue life of the subject bridge is suggested, and the validity of the parameter is confirmed.

Evaluation on Structural Stability of Railway Level Crossing System using Rubber Panel by High Speed Train Gust (고무보판 패널 철도건널목 시스템의 고속열차 풍하중에 대한 구조 안정성 분석)

  • Choi, Jung-Youl;Kim, Sang-Jin;Shin, Tae-Hyoung;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.355-360
    • /
    • 2019
  • In this study, the structural stability of the railway level crossing system using rubber panel for high speed lines was investigated by applying the specification for wind load conditions (Train gust) of high speed train (300km/h and 360km/h). A finite element analysis using three-dimensional modeling was carried out by applying the field conditions that was installed with the complicated configuration of the rubber plate panel system. As a result of this study, the structural stability of the rubber plate panel system for high speed train gust was analytically verified.

Centrifuge Model Tests on Trafficability of Very Soft Ground Treated with Geotextile and Sand Mat (토목섬유와 모래로 처리된 초연약지반의 장비주행성에 대한 원심모형실험)

  • Jun, Sang-Hyun;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.13-23
    • /
    • 2010
  • In this study, centrifuge model tests with 50 g gravitational condition were performed to evaluate the bearing capacity of very soft ground, improved by spreading geotextile and sand on the surface of ground, for the heavy machinery to be able to access. For undrained shear strength of ground model, prepared with the clay sampled from the field, being in the range of 3.1~11.7 kPa, bearing capacity tests were performed with the model footing and the loading system built to simulate the heavy machinery on the ground model treated with geotextile and sand. Test results were compared with theoretically and numerically evaluated ones. Test results about load-settlement curves showed that the bearing capacity increases with the increase of the undrained shear strength of ground. Punching shear or local shear failure was also observed. For a relatively low undrained shear strength of ground, settlement behavior is found to be crucial to evaluating the trafficability of machinery whereas bearing capacity becomes a dominant factor with the increase of undrained shear strength of ground. The method for assessing the bearing capacity of the ground related to trafficability of machinery is presented by acquiring the regression relationship between the contact pressure of machinery and settlements using load-settlement curves with the change of the undrained shear strength. Furthermore, results of numerical analyses about load-settlement relation are in relatively good agreement with those of centrifuge model test.