• Title/Summary/Keyword: 說苑

Search Result 1,845, Processing Time 0.025 seconds

Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder (다공성 철 분말을 이용한 열전지용 열원 적합성 연구)

  • Kim, Ji Youn;Yoon, Hyun Ki;Im, Chae Nam;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.

Study of Satellite Image Analysis Techniques to Investigate Construction Environment Analysis of Resource Development in the Arctic Circle - Alberta, Canada (북극권 자원개발 건설환경 조사를 위한 위성 영상 분석 기법 연구 - 캐나다 앨버타주 대상)

  • Kim, Sewon;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.549-559
    • /
    • 2021
  • The Arctic Circle's huge amounts of fossil fuels and mineral resources are being developed and subjected to active construction projects. Global efforts are continuing to actively respond to climate change, but the dependence on fossil fuels remains high. This study reports a preliminary survey conducted in Alberta, Canada, where oil sand resources are actively developed. A land cover map was prepared using satellite imagery to reduce the cost and time of surveying a wide area. Results likely useful to resource development projects such as ground surface temperature and snow cover distribution were derived by using the obtained image classification results. It is expected that the results of the present research and analysis will be used to establish strategies for the successful promotion and operation of projects to develop resources in the Arctic.

An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation (에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

Analysis Study of Diaphragm Wall by Construction Process of Large Underground Space for Complex Plant Installation (복합플랜트 설치를 위한 지하 대공간 건설 공정별 연속벽체 해석 연구)

  • Kim, Sewon;Park, JunKyung;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.11-19
    • /
    • 2022
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. It is necessary to analyze the stability according to various ground conditions and load conditions for the construction of large-scale underground complex plants. In this paper, horizontal/vertical displacement and stress distribution according to the load condition and construction process were analyzed using finite element analysis (FEM), Based on the analysis results of various conditions, factors to be considered in the detailed design and construction of the underground complex plant were reviewed and the implications on design factors (Intermediate wall installation status, Pre-reinforcing area, etc.) for underground large space construction were derived.

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

A case study of post-stroke insomnia patient using conservative Korean medical treatment (불면을 호소하는 뇌실질내출혈 환자 치험 1례)

  • Kim, Gyeong-muk;Kim, Se-won;Seo, Yu-na;Jung, Woo-sang;Moon, Sang-Kwan;Jin, Chul;Cho, Ki-ho;Kwon, Seungwon
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • A case of a 46-year-old Korean male with post-stroke insomnia that induced by intracranial hemorrhage was presented. He was treated with Transcutaneous electric acupoint stimulation (TEAS) at BL62 and KI6 once per a day for 17 days. We recorded the patient's sleep time and time of asleep, and used PSQI-K to assess severity of patient's insomnia symptom. After using TEAS, there was improvement in patient's insomnia severity and the time of sleep. From the result of this case, electrical stimulation at acupoint can may be effective in treating post-stroke insomnia.

  • PDF

Experimental Study for Thermal Characteristics of Frozen Soil Samples (동토 시료의 열적 특성 분석을 위한 실험적 연구)

  • Sewon, Kim;Sangyeong, Park;Jongmuk, Won;YoungSeok, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • Recently, the Arctic resource development project, where undeveloped energy resources (oil, natural gas, etc.) are deposited, is actively being promoted for the perspective of diversifying the construction market and developing future energy resources. However, the frozen ground always has problems such as sinking and frost-heaving due to extreme weather. Therefore, it is necessary to analyze the thermal characteristics of the frozen soil to secure the stability of the ground structure. In this study, a series of laboratory tests were performed to evaluated the thermal characteristics of frozen soil samples in the oil sand field in Alberta, Canada. In additon, it was compared with the results of domestic(Gangwond-do) sample performed under the same conditions. As a comparison results of the experiments, it was clarified that the different frozen water content and thermal conductivity characteristics by temperature after completion of freezing could affect the frozen soil behavior.

Effect of Managerial Ability on Reward Level and Performance-Reward Sensitivity (경영자 능력이 보상수준 및 성과-보상 민감도에 미치는 영향)

  • Seol-Won, Byun
    • Journal of Industrial Convergence
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2023
  • This study analyzed the effect of manager's ability on compensation policy (compensation level and performance-reward sensitivity). To this end, the final 14,150 company-year data were used for KOSPI and KOSDAQ listed companies excluding the financial industry from 2012 to 2019. As a result of the empirical analysis, the higher the manager's ability, the higher the next reward level (the manager's ability hypothesis), but the performance-reward sensitivity decreased. This confirms the manager ability hypothesis through a positive (+) relationship between manager ability and compensation, and means that high compensation for manager ability may be additional compensation for manager ability other than performance, rather than due to performance. This study differs from previous studies and has contributions in that it examines the more complex effects of managerial ability and compensation system.

Development of a Site Suitability Evaluation Model For Arctic-Circle Energy Resource Construction (북극권 에너지 자원개발 활동을 위한 입지 적합도 평가 모델 개발)

  • Sewon Kim;Hyun-Jun Choi;Byungyun Yang;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.105-117
    • /
    • 2023
  • The recent global energy supply crisis has led to increased uncertainty in international energy markets. These market changes lead to a rise in global energy prices and development is expanding to the extreme cold regions (Arctic Circle) where undeveloped energy resources are abundantly stored. Arctic Circle has a special business environment such as natural environment, laws, institutions and culture, research on location evaluation of development areas is necessary in advance. In this study, the spatial information of Alberta, Canada, where non-traditional energy resource development activities have recently been active, was collected and analyzed. In addition, an optimal location evaluation model for resource development was developed using construction environment spatial information data and the reliability is verified by comparing and analyzing the existing resource development areas.