• Title/Summary/Keyword: β-glucosidase

Search Result 100, Processing Time 0.03 seconds

Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces

  • Ji, Keunho;Jang, Na Young;Kim, Young Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1568-1577
    • /
    • 2015
  • The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β-glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'-azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

Effects of Roasting Temperature on Quality Characteristics and Biological Activity of Quinoa (퀴노아의 품질특성 및 생리활성에 대한 로스팅 온도의 영향)

  • Jin, Mingeun;Jeon, Ahyeong;Kwon, Jihyun;Kim, Naeun;Kim, Younghwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.3
    • /
    • pp.308-316
    • /
    • 2021
  • The present study aimed to evaluate the effects of roasting temperature on the quality characteristics and biological activity of quinoa. Quinoa was roasted at 160, 200, and 220℃ for 20 min. The lightness (L*) of quinoa decreased, however, the redness (a*) increased as the roasting temperature increased. The yellowness (b*) was the highest at 160℃ and decreased at 200 and 220℃. The highest contents of total polyphenol, flavonoid, and quercetin were observed at 220℃, the highest roasting temperature. The highest radical scavenging activities of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (73.65%) and α,α-diphenyl-β-picrylhydrazyl free radicals (47.82%) were found in roasted quinoa at 220℃. The α-glucosidase activity was inhibited by 62.13% at this temperature. The roasted quinoa at 220℃ also showed a significant cytoprotective effect against oxidative stress in HepG2 cells. These results could be useful in the development of food products using quinoa.

Enhanced Cholesterol-Lowering and Antioxidant Activities of Soymilk by Fermentation with Lactiplantibacillus plantarum KML06

  • Ji Seung Han;Jae Yeon Joung;Hyung Wook Kim;Jin Hwan Kim;Hyo Su Choi;Hyun Jin Bae;Ji Hun Jang;Nam Su Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1475-1483
    • /
    • 2023
  • This study aimed to evaluate the cholesterol-lowering and antioxidant activities of soymilk fermented with probiotic Lactobacillaceae strains and to investigate the production of related bioactive compounds. Lactiplantibacillus plantarum KML06 (KML06) was selected for the fermentation of soymilk because it has the highest antioxidant, cholesterol-lowering, and β-glucosidase activities among the 10 Lactobacillaceae strains isolated from kimchi. The genomic information of strain KML06 was analyzed. Moreover, soymilk fermented with KML06 was evaluated for growth kinetics, metabolism, and functional characteristics during the fermentation period. The number of viable cells, which was similar to the results of radical scavenging activities and cholesterol assimilation, as well as the amount of soy isoflavone aglycones, daidzein, and genistein, was the highest at 12 h of fermentation. These results indicate that soymilk fermented with KML06 can prevent oxidative stress and cholesterol-related problems through the production of soy isoflavone aglycones.

In Vitro Screening of the Physiological Activities of lshige foliacea Extracts (넓패(Ishige foliacea) 추출물의 생리활성 탐색)

  • Ji-Youn Kim;Da-Bin Park;Min-Gyeom Kim;Sun Joo Park;Yong-Tae Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.3
    • /
    • pp.209-215
    • /
    • 2024
  • Ishige foliacea belongs to class Phaeophyceae and family Ishigeaceae. This study investigated the physiological activities of the Korean marine algae I. foliacea. Its solvent extracts were prepared with 70% ethanol, 80% methanol, and distilled water. The ethanol and methanol extracts had higher α-glucosidase (half-maximal inhibitory concentration, IC50: 0.67-0.73 mg/mL), xanthine oxidase (IC50: 0.25-0.28 mg/mL), and angiotensin-converting enzyme (IC50: 25.29-38.28 ㎍/mL) inhibitory activities than those of the water extract. The ethanol and methanol extracts possessed high acetylcholinesterase inhibitory activity (IC50: 0.78c0.97 mg/mL). Conversely, the water extract exhibited the highest β-secretase inhibitory activity (IC50: 0.48 mg/mL). These results indicate that I. foliacea may be useful as a functional substance in food and pharmaceuticals with anti-diabetic, anti-gout, anti-hypertension, and anti-dementia properties.

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

Bioconversion of Rutin in Tartary Buckwheat by the Korean Indigenous Probiotics (한국형 프로바이오틱스에 의한 쓴메밀 내 rutin의 생물전환)

  • Chang Kwon;Jong Won Kim;Young Kwang Park;Seungbeom Kang;Myung Jun Chung;Su Jeong Kim;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • In this study, bioconversion of rutin to quercetin was confirmed by the fermentation of Korean indigenous probiotics and tartary buckwheat. Based on whole genome sequencing of 17 probiotics species, α-rhamnosidase, related to bioconversion of isoquercetin (quercetin 3-β-D glucoside) from rutin, is identified in the genome of CBT BG7, LC5, LR5, LP3, LA1, and LGA1. β-Glucosidase, related to bioconversion of isoquercetin to quercetin, is identified in the genome of all 17 species. Among the 17 probiotics species, 6 probiotics including CBT BG7, LR5, LP3, LA1, LGA1 and ST3 performed the bioconversion of rutin to quercetin up to 21.5 ± 0.3% at 7 days after fermentation. The fermentation of each probiotics together with enzyme complex Cellulase KN® was conducted to reduce the time of bioconversion. As a result, CBT LA1 which showed the highest yield of bioconversion of 21.5 ± 0.3% when the enzyme complex was not added showed high bioconversion yield of 84.6 ± 0.5% with adding the enzyme complex at 1 day after fermentation. In particular, CBT ST3 (96.2 ± 0.4%), SL6 (90.1 ± 1.4%) and LP3 (90.0 ± 0.4%) showed high yield of bioconversion more than 90%. In addition, such probiotics including high levels in quercetin indicated the inhibitory effects of NO production in LPS-induced RAW264.7 cells. In this study, we confirmed that the fermentation of Korean indigenous probiotics and enzyme complex together with roasted tartary buckwheat increased the content of quercetin and reduced the time of bioconversion of rutin to quercetin which is a bioactive compound related to anti-inflammatory, antioxidants, anti-obesity, and anti-diabetes.

Fermentation of Black Garlic Wine and its Characteristics (흑마늘 와인의 발효 및 그 특성)

  • Ha, Sung Min;Choi, Hye Jung;Shin, Gyeong Yeon;Ryu, Beung Ho;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.796-804
    • /
    • 2016
  • In the present study, we screened suitable yeasts for wine fermentation and evaluated the fermentative characteristics of Saccharomyces sp. BCNU 6006 and its anti-oxidant activities. Firstly, various yeasts were isolated from Makgeolli, fruits, and fermented foods. Then, the preliminary selections of suitable yeasts were made using an enzymatic activity assay of glucosidase, glycosidase, protease and tolerance to ethanol and SO2. In addition, the production of biogenic amines and hydrogen sulfide was also monitored. The 9 yeast strains initially selected were determined to belong to the genera Saccharomyces and Kazachtania phylogenetically. We investigated the optimal conditions for wine fermented with black garlic juice (BGJ). The optimal conditions of alcohol fermentation using BGJ were 26 brix, 28℃, and 10 days. Finally, the fermentation products of black garlic wine (BGW) fermented with Saccharomyces sp. BCNU 6006 exhibited 15.03% ethanol, 12 brix of sugar, and pH 4.01. The contents of total polyphenol, total flavonoid, tannin, and 5-HMF compound of BGW were 3.85 mg/ml, 0.51mg/ml, 5.90 mg/ml, and 0.07 mg/ml respectively, lower than that of BGJ. DPPH radical scavenging activity, ABTS radical scavenging activity, and reducing power of BGW were 90.77%, 95.20% and 1.261 respectively, lower than that of BGJ. Superoxide anion (O2-) radical scavenging activity was 94.42%, higher than that of BGJ. Based on the above results, the industrial potential of Saccharomyces sp. BCNU 6006 as a wine-making yeast was confirmed in the present study.

Whitening and inhibiting NF-κB-mediated inflammation properties of the biotransformed green ginseng berry of new cultivar K1, ginsenoside Rg2 enriched, on B16 and LPS-stimulated RAW 264.7 cells

  • Xu, Xing Yue;Yi, Eun Seob;Kang, Chang Ho;Liu, Ying;Lee, Yeong-Geun;Choi, Han Sol;Jang, Hyun Bin;Huo, Yue;Baek, Nam-In;Yang, Deok Chun;Kim, Yeon-Ju
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.631-641
    • /
    • 2021
  • Background: Main bioactive constituents and pharmacological functions of ripened red ginseng berry (Panax ginseng Meyer) have been frequently reported. Yet, the research gap targeting the beneficial activities of transformed green ginseng berries has not reported elsewhere. Methods: Ginsenosides of new green berry cultivar K-1 (GK-1) were identified by HPLC-QTOF/MS. Ginsenosides bioconversion in GK-1 by bgp1 enzyme was confirmed with HPLC and TLC. Then, mechanisms of GK-1 and β-glucosidase (bgp1) biotransformed GK-1 (BGK-1) were determined by Quantitative Reverse Transcription-Polymerase Chain Reaction and Western blot. Results: GK-1 possesses highest ginsenosides especially ginsenoside-Re amongst seven ginseng cultivars including (Chunpoong, Huangsuk, Kumpoong, K-1, Honkaejong, Gopoong, and Yunpoong). Ginseng root's biomass is not affected with the harvest of GK-1 at 3 weeks after flowering period. Then, Re is bioconverted into a promising pharmaceutical effect of Rg2 via bgp1. According to the results of cell assays, BGK-1 shows decrease of tyrosinase and melanin content in α-melanocyte-stimulating hormone challenged-murine melanoma B16 cells. BGK-1 which is comparatively more effective than GK-1 extract shows significant suppression of the nuclear factor (NF)-κB activation and inflammatory target genes, in LPS-stimulated RAW 264.7 cells. Conclusion: These results reported effective whitening and anti-inflammatory of BGK-1 as compared to GK-1.

Preparation of fermentation broth of Sparassis latifolia containing soluble β-glucan using four Lactobacillus species (수용성 β-glucan을 함유한 꽃송이버섯 발효액의 제조)

  • Jo, Han-Gyo;Choi, Moon-Hee;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • Glucan has been shown to have a significant role in the activation of the immune system, including increased activity of macrophages and so on. Sparassis latifolia (formerly S. crispa) is an edible mushroom abundant in dietary fiber and widely known to contain high levels of ${\beta}$-glucan. In the present study, fermentation broths containing soluble ${\beta}$-glucan were prepared by fermentation with mushrooms with four Lactobacillus species (L. plantarum subsp. Plantarum, L. acidophilus, L. helveticus, and L. delbrueckii subsp. Bulgaricus). After culturing four Lactobacillus spp. in MRS broth, each Lactobacillus was inoculated into MRS broth containing S. latifolia powder 5% (w/v) at $37^{\circ}C$ in an anaerobic incubator for five days. It showed that the ${\beta}$-glucan contents were different in each fermentation sample. The suitable conditions for the preparation of mushroom fermentation broths were investigated and discussed.

Isolation and Characterization of Airborne Mushroom Damaging Trichoderma spp. from Indoor Air of Cultivation Houses Used for Oak Wood Mushroom Production Using Sawdust Media

  • Kim, Jun Young;Kwon, Hyuk Woo;Lee, Dong Hyeung;Ko, Han Kyu;Kim, Seong Hwan
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.674-683
    • /
    • 2019
  • Some species of the Trichoderma genus are reported as the major problem in oak wood mushroom production in Korea. In spite of economic loss by the fungi, scientific information on airborne Trichoderma species is not much available. To generate information for disease management development we analyzed airborne Trichoderma. A total of 1,063 fungal isolates were purely obtained from indoor air sampling of cultivation houses used for oak wood mushroom using sawdust media. Among the obtained isolates, 248 isolates were identified as Trichoderma fungi including T. harzianum, T. atroviride, T. citrinoviride, and T. pseudokoningii, by morphological and molecular analysis. T. harzianum was dominant among the four identified species. All the four Trichoderma species grew fast on solid nutrient media tested (potato dextrose agar [PDA], malt extract agar [MEA], Czapek's Dox + yeast extract agar [CYA] and cornmeal dextrose agar). Compact mycelia growth and mass spore production were better on PDA and CYA. In addition, T. harzianum and T. citrinoviride formed greenish and yellowish mycelium and spores on PDA and CYA. Greenish and yellowish pigment was saturated into PDA only by T. pseudokoningii. These four Trichoderma species could produce extracellular enzymes of sawdust substrate degradation such as β-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease. Their mycelia inhibited the growth of oak wood mushroom mycelia of two tested cultivars on dual culture assay. Among of eleven antifungal agents tested, benomyl was the best to inhibit the growth of the four Trichoderma species. Our results demonstrate that the airborne Trichoderma fungi need to be properly managed in the cultivation houses for safe mushroom production.