• Title/Summary/Keyword: {\mathbb{S}}^3$

Search Result 162, Processing Time 0.021 seconds

WEAKLY LAGRANGIAN EMBEDDING AND PRODUCT MANIFOLDS

  • Byun, Yang-Hyun;Yi, Seung-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.809-817
    • /
    • 1998
  • We investigate when the product of two smooth manifolds admits a weakly Lagrangian embedding. Prove that, if $M^m$ and $N^n$ are smooth manifolds such that M admits a weakly Lagrangian embedding into ${\mathbb}C^m$ whose normal bundle has a nowhere vanishing section and N admits a weakly Lagrangian immersion into ${\mathbb}C^n$, then $M \times N$ admits a weakly Lagrangian embedding into ${\mathbb}C^{m+n}$. As a corollary, we obtain that $S^m {\times} S^n$ admits a weakly Lagrangian embedding into ${\mathbb}C^{m+n}$ if n=1,3. We investigate the problem of whether $S^m{\times}S^n$ in general admits a weakly Lagrangian embedding into ${\mathbb} C^{m+n}$.

  • PDF

A NEW NON-MEASURABLE SET AS A VECTOR SPACE

  • Chung, Soon-Yeong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.429-432
    • /
    • 2006
  • We use Cauchy's functional equation to construct a new non-measurable set which is a (vector) subspace of \mathbb{R}$ and is of a codimensiion 1, considering \mathbb{R}$, the set of real numbers, as a vector space over a field \mathbb{Q}$ of rational numbers. Moreover, we show that \mathbb{R}$ can be partitioned into a countable family of disjoint non-measurable subsets.

CYCLIC CODES OF EVEN LENGTH OVER Z4

  • Woo, Sung-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.697-706
    • /
    • 2007
  • In [8], we showed that any ideal of $\mathbb{Z}_4[X]/(X^{2^n}-1)$ is generated by at most two polynomials of the standard forms. The purpose of this paper is to find a description of the cyclic codes of even length over $\mathbb{Z}_4$ namely the ideals of $\mathbb{Z}_4[X]/(X^l\;-\;1)$, where $l$ is an even integer.

SOME WEIGHTED APPROXIMATION PROPERTIES OF NONLINEAR DOUBLE INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Serenbay, Sevilay Kirci
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.483-501
    • /
    • 2018
  • In this paper, we present some recent results on weighted pointwise convergence and the rate of pointwise convergence for the family of nonlinear double singular integral operators in the following form: $$T_{\eta}(f;x,y)={\int}{\int\limits_{{\mathbb{R}^2}}}K_{\eta}(t-x,\;s-y,\;f(t,s))dsdt,\;(x,y){\in}{\mathbb{R}^2},\;{\eta}{\in}{\Lambda}$$, where the function $f:{\mathbb{R}}^2{\rightarrow}{\mathbb{R}}$ is Lebesgue measurable on ${\mathbb{R}}^2$ and ${\Lambda}$ is a non-empty set of indices. Further, we provide an example to support these theoretical results.

ON THE SIMPLICIAL COMPLEX STEMMED FROM A DIGITAL GRAPH

  • HAN, SANG-EON
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.115-129
    • /
    • 2005
  • In this paper, we give a digital graph-theoretical approach of the study of digital images with relation to a simplicial complex. Thus, a digital graph $G_k$ with some k-adjacency in ${\mathbb{Z}}^n$ can be recognized by the simplicial complex spanned by $G_k$. Moreover, we demonstrate that a graphically $(k_0,\;k_1)$-continuous map $f:G_{k_0}{\subset}{\mathbb{Z}}^{n_0}{\rightarrow}G_{k_1}{\subset}{\mathbb{Z}}^{n_1}$ can be converted into the simplicial map $S(f):S(G_{k_0}){\rightarrow}S(G_{k_1})$ with relation to combinatorial topology. Finally, if $G_{k_0}$ is not $(k_0,\;3^{n_0}-1)$-homotopy equivalent to $SC^{n_0,4}_{3^{n_0}-1}$, a graphically $(k_0,\;k_1)$-continuous map (respectively a graphically $(k_0,\;k_1)$-isomorphisim) $f:G_{k_0}{\subset}{\mathbb{Z}}^{n_0}{\rightarrow}G_{k_1}{\subset}{\mathbb{Z}^{n_1}$ induces the group homomorphism (respectively the group isomorphisim) $S(f)_*:{\pi}_1(S(G_{k_0}),\;v_0){\rightarrow}{\pi}_1(S(G_{k_1}),\;f(v_0))$ in algebraic topology.

  • PDF

ON THE GENUS OF Sm × Sn

  • Cristofori, Paola
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.407-421
    • /
    • 2004
  • By using a recursive algorithm, we construct edge-coloured graphs representing products of spheres and consequently we give upper bounds for the regular genus of ${\mathbb{S}}^{m}\;\times\;{\mathbb{S}}^{n}$, for each m, n > 0.

$\kappa$-CONFIGURATIONS IN $\mathbb{P}^2$ AND GORENSTEIN IDEALS OF CODIMENSION 3

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.249-261
    • /
    • 1997
  • We find a necessary and sufficient condition for a $\kappa$-confi-guration $\mathbb{X}$ in $\mathbb{P}^2$ to be in generic position. We obtain the number and degrees of minimal generators of some Gorenstein ideals of codimension 3 and so obtain their minimal free resolution s of these ideals.

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

THE TENSOR PRODUCTS OF SPHERICAL NON-COMMUTATIVE TORI WITH CUNTZ ALGEBRAS

  • Park, Chun-Gil;Boo, Deok-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.127-139
    • /
    • 1997
  • The spherical non-commutative $\mathbb{S}_{\omega}$ were defined in [2,3]. Assume that no non-trivial matrix algebra can be factored out of the $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_k(\mathbb{C})$. It is shown that the tensor product of the spherical non-commutative torus $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has a trivial bundle structure if and only if k and 2d - 1 are relatively prime, and that the tensor product of the spherical non-commutative torus $S_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when k > 1.

  • PDF

A NOTE ON COMPACT MÖBIUS HOMOGENEOUS SUBMANIFOLDS IN 𝕊n+1

  • Ji, Xiu;Li, TongZhu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.681-689
    • /
    • 2019
  • The $M{\ddot{o}}bius$ homogeneous submanifold in ${\mathbb{S}}^{n+1}$ is an orbit of a subgroup of the $M{\ddot{o}}bius$ transformation group of ${\mathbb{S}}^{n+1}$. In this note, We prove that a compact $M{\ddot{o}}bius$ homogeneous submanifold in ${\mathbb{S}}^{n+1}$ is the image of a $M{\ddot{o}}bius$ transformation of the isometric homogeneous submanifold in ${\mathbb{S}}^{n+1}$.