• 제목/요약/키워드: , Machining Feature

검색결과 141건 처리시간 0.023초

절삭조건과 절삭력 파라메타를 이용한 공구상태 진단에 관한 연구(I) - 신호처리 및 특징추출 - (A Study on the Diagnosis of Cutting Tool States Using Cutting Conditions and Cutting Force Parameters(l) - Signal Processing and Feature Extraction -)

  • Cheong, C.Y.;Yu, K.H.;Suh, N.S.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.135-140
    • /
    • 1997
  • The detection of cutting tool states in machining is important for the automation. The information of cutting tool states in metal cutting process is uncertain. Hence a industry needs the system which can detect the cutting tool states in real time and control the feed motion. Cutting signal features must be sifted before the classification. In this paper the Fisher's linear discriminant function was applied to the pattern recognition of the cutting tool states successfully. Cutting conditions and cutting force para- meters have shown to be sensitive to tool states, so these cutting conditions and cutting force paramenters can be used as features for tool state detection.

  • PDF

A Study on the Characteristics of BTA Deep Drilling for Marine Part Carbon and Alloy Steels

  • Sim, Sung-Bo;Kim, Chi-Ok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제3권1호
    • /
    • pp.40-48
    • /
    • 2000
  • The term "deep holes" is used to describe the machining of holes with a relatively large length to diameter ratio. The main feature of BTA deep hole drilling is the stabilization of cutting force necessary for the self guidance of the drill head. An additional feature is the cutting tool edges that are unsymmetrically placed on the drill head. There is an increasing necessity to predict the hole geometry and other dynamic stability behavior of deep hole drilling guidance. In this study, the effects of BTA deep hole drilling conditions on the hole profile machined piece are analyzed using domain analysis technique. The profile of deep hole drilled work piece is related to cutting speed, feed rate, chip flow, tool wear, and so on. This study deals with the experimental results obtained during the BTA drilling on SM45C, SM55C carbon steels and SCM440 steels under various cutting conditions, and these results are compared with analytical evaluations.aluations.

  • PDF

볼트 형상에 대한 조립용잇겅 평가 시스템 -볼트의 놓임안정성 및 취급용이성을 중심으로- (Evaluation System of Assemblability in Bolt Feature -Stability of Laying and Handlability of Parts-)

  • 목학수;김경윤;이재철
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.40-51
    • /
    • 1995
  • The assemblability was determined by the structure of product and the relationship between composing parts and machining parts. In this paper, the bolt was divided into bolt-head, -shaft, -thread and -end. For the better assemblability in bolting process, the geometric and technological characteristics of bolts in terms of pre- and in-assembly process were analyzed. And this paper presents assemblability evaluation for bolt feature design alternatives. For this evaluation system, we considered systematically eight factors for assemblability, but introduced two factores for the stability of laying and for the handlability of parts. And AutoCAC system is interfaced with the evaluation system written in C-language.

  • PDF

복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 - (Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path)

  • 김지환;이장범;김영진
    • 산업공학
    • /
    • 제18권3호
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

3차원 CAD에서 STEP Part111을 통한 AP224 특징형상 데이터 번역 (AP224 based Feature Translation from 3D CAD through STEP Part111)

  • 김준환
    • 한국CDE학회논문집
    • /
    • 제11권4호
    • /
    • pp.303-314
    • /
    • 2006
  • The exchange of CAD (Computer Aided Design) models between different CAD systems and to downstream applications such as manufacturing has become very important to modem industry. One serious current issue is that the process cannot automatically import existing 3-D solid models in a variety of commercial CAD formats into the process without manually re-mastering the model in current standard including "SIEP AP(Application Protocol) 203 Edition 1" To fully integrate technical data from the design agency to the shop floor, design intent and validated 3D geometry of feature based parametric CAD model should be brought into the standardized processes. To overcome this limitation, AP203 Edition 2 (Ed.2) and its related STEP parts such as Part55, Part108, Part109, Part111 and Part112 are starting to be available to handle this problem. The features in Part111 are harmonized with the machining features available in AP224. This paper is focused on two mapping technologies: CAD to Part111 mapping and Pat111 to AP224 mapping including case studios and it will provide the guideline about what should be done next in the AP203 Ed.2 to AP224 mapping. The final goal of this project is to integrate technical data from CAD to AP224 based manufacturing information through AP203 Ed.2.

초정밀 대면적 미세 형상 가공기의 구조 특성 해석 (Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features)

  • 김석일;이원재
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

Development of 3D-based On-Machine Measurement Operating System

  • Yoon Gil-Sang;Heo Young-Moo;Kim Gun-Hee;Cho Myeong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.45-50
    • /
    • 2005
  • This paper proposed an efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software-based 3D modeler for inspection on machine, and it is interfaced with machine tools via RS232C. The software is composed of two inspection modules; one is touch probe operating module, and the other is laser displacement sensor operating module. The module for touch probe needs the inspection feature extracted from CAD data. The touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of the laser displacement sensor is used to inspect profiles and very small holes. An advantage of this inspection method is the ability to execute on-line inspection during machining or afterward. The efficiency of proposed system which can predict and define the machining errors of each process was verified, so the developed system was applied to inspect a mold-base (cavity, core).

C-means 알고리즘을 이용한 마이크로 엔드밀의 상태 감시 (Condition Monitoring of Micro Endmill using C-means Algorithm)

  • 권동희;정연식;강익수;김전하;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.162-167
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro to micro parts. Also, the method of micro-grooving using micro endmilling is used widely owing to many merit, but has problems of precision and quality of products due to tool wear and tool fracture. This study deals with condition monitoring using acoustic emission(AE) signal in the micro-grooving. First, the feature extraction of AE signal directly related to machining process is executed. Then, the distinctive micro endmill state according to the each tool condition is classified by using the fuzzy C-means algorithm, which is one of the methods to recognize data patterns. These result is effective monitoring method of micro endmill state by the AE sensing techniques which can be expected to be applicable to micro machining processes in the future.

  • PDF

머신비전 시스템에서 레이저 정밀 가공을 위한 렌즈 수차 보정 방법 (The Lens Aberration Correction Method for Laser Precision Machining in Machine Vision System)

  • 박양재
    • 디지털융복합연구
    • /
    • 제10권10호
    • /
    • pp.301-306
    • /
    • 2012
  • 본 논문은 머신비전시스템에서 정확한 이미지 획득을 위한 방법을 제안한다. 각종 렌즈에서 요구되는 가장 중요한 기능으로는 실물과 동일한 고품질의 결상을 구현하는 광학적 역할이다. 그러나 머신비전시스템의 입력부에서는 렌즈의 수차로 인하여 왜곡현상이 발생한다. 이러한 문제를 해결하기 위해 실세계 좌표계와 영상 좌표계 간의 변환 관계를 정의해주는 매핑 기능으로, 행렬연산을 통하여 두 좌표간의 거리를 계산하여 정확한 위치를 지정하게 된다. 레이저 정밀 가공작업에서도 Galvanometer를 사용하면 비구면 초점 렌즈에 의하여 발생되고 있는 렌즈 수차를 보정하여야 가공 오차를 개선 할 수 있다. 비구면 렌즈의 수차는 2차원 곡선의 형태를 가지고 있으나, 기존의 렌즈 보정 방법인 선형방법은 매우 많은 점들을 검사하여 보정시간이 많이 소요되는 문제점이 있었다. 가공장비에서 렌즈의 수차로 인하여 발생하는 가공오차를 감소시키기 위하여 Bilinear interpolation 기법을 적용하는 방법을 제안하였다. 제안한 방법은 기존 선형방법과 비교하여 위치 오차의 평균값과 표준편차가 향상되었음 실험을 통하여 입증하였으며 실제 레이저 응용업무에 적용하고 있다.

형상 검색을 이용한 제트엔진 절삭가공을 위한 빠른 CAM 모델 생성 방법 (A Fast Generation Method of CAM Model for Machining of Jet Engines Using Shape Search)

  • 김병철;송일환;신수철
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.327-336
    • /
    • 2016
  • 항공기 엔진 제작사들은 수치제어 공작기계를 운영하고 제어하기 위해 CAM 소프트웨어를 도입했다. 그러나 CAM 모델을 생성하는 일은 긴 시간이 걸리고 오류가 발생하기 쉽다. 이는 가공연산 및 절차를 수작업으로 정의하기 때문이다. CAM 모델을 자동으로 생성하기 위해, 특징형상 인식 기술들이 오래 전부터 연구되었다. 그러나 인식 범위가 제한적이기 때문에 제트엔진과 같이 복잡한 형상에는 완전히 적용할 수 없다. 본 연구에서는 형상 검색 기술을 이용해 CAD 모델로부터 CAM 모델을 빠르게 생성하는 새로운 방법을 제안한다. 이 방법에서는, 작업자가 한 개의 가공연산을 참조연산으로 지정하면, 동일한 가공형상을 가지는 형상들을 검색하고, 참조연산을 검색된 형상들의 위치로 복사한다. 제트엔진 압축기 케이스를 대상으로 한 실험을 통해 제안한 방법을 검증하였다.