• Title/Summary/Keyword: +4배

Search Result 12,747, Processing Time 0.055 seconds

Purification of antigenic proteins of Paragonimus westermani and their applicability to experimental cat paragonimiasis (폐(肺)디스토마(Paragonimus westermani) 감염(感染) 고양이 혈청(血淸)에 대(對)한 ELISA 항체가(抗體價)의 의의(意義))

  • Choi, Won-Young;Yoo, Jae-Eul;Nam, Ho-Woo;Choi, Hyung-Rak
    • Parasites, Hosts and Diseases
    • /
    • v.24 no.2
    • /
    • pp.177-186
    • /
    • 1986
  • This study was designed to evaluate the partially purified antigens which were fractionated from crude extract of Paragonimus westermani and to monitor the enzyme-linked immunosorbent assay (ELISA) in experimental cat paragonimiasis during the course of infection as well as before and after chemotherapy. Crude extract of 6-month-old adult P. westermani was fractionated to 5 antigens by successive applications of ammonium sulfate precipitation, ion exchange chromatography and gel filtration. And the cats, 10 in each group, were infected with 60, 30, 15, and 5 metacercariae, then the half of each group was treated with praziquantel 2 times in one day of 100mg per kilogram of weight on 150 days after the infection. Sera were collected every 10 days. ELISA was performed with the concentration of $2{\mu}g/ml$ antigen, 100 times diluted sera and 1,000 times diluted alkaline phosphatase conjugated anti-cat IgG. The results were as follows: 1. Absorbance by ELISA with proteins precipitated by differential concentration of ammonium sulfate was the highest at $51{\sim}65%$ precipitate (PA2), followed by $0{\sim}50%$ precipitate (PAl), $66{\sim}80%$ precipitate (PA3), and $81{\sim}90%$ precipitate (PA4). Unprecipitated protein over 90% ammonium sulfate (PA5) showed the lowest antigenicity. 2. Fractionation of PA1, PA2, and PA3 through the DEAE-cellulose column did not differentiate the antigenic proteins. 3. By passing through the Sephadex G-200 column, PA1 and PA2 were fractionated to high molecular weight proteins and those of low molecular weight which showed high absorbance by ELISA (PA1-I, II and PA2-I, II). But PA3 was shown to have a fraction of high molecular weight proteins (PA3-I) which showed high antigenicity. 4. SDS-polyacrylamide gel electrophoresis of PA1-I, P A1-II, PA2-I, PA2-II, PA3-I, and crude extract was performed. Fraction PA1-I was composed of proteins which had the molecular weight of 270 kilodaltons(KD) to 196 KD; of them 220KD protein was major band. Fraction PA2-I was composed of $255{\sim}225\;KD$, and PA3-I, $255{\sim}240\;KD$, respectively. Fraction PA1-II and fraction PA2-II consisted of 30 KD proteins. 5. Absorbance by ELISA began to increase within $10{\sim}20$ days after the infection and reached the highest on $140{\sim}180$ days, then made plateau thereafter. 6. Absorbance by ELISA decreased after praziquantel treatment. In 60 metacercariae infection group, the absorbance had been decreasing, but remained within the positive range during observation period, while those of 30, 15, and 5 metacercariae infection groups turned to negative range. 7. Fraction PA1-II showed the highest antigenicity in ELISA, then fraction PA2-I, fraction PA1-I, fraction PA2-II, fraction PA3-I and crude extract followed. In early phase of infection, the absorbance of fraction PA1-II showed more rapid increase than those of the other fractions and it came to positive range at $20{\sim}30$ days after infection.

  • PDF

Studies on the Effects of Rice Plant on the Changes of Materials in Submerged Paddy Soils (수도재배(水稻栽培)가 답상태토양(畓狀態土壤)의 물질변화(物質變化)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.2
    • /
    • pp.71-97
    • /
    • 1974
  • Many studies on the changes of the materials in the water-logged paddy soil have been reported, but there will be several problems to apply them on the field soil. The main differences between the method of soil packed in beaker or column tube to that of natural field furrow slice are with or without of the rice root and the effect of water percolation. On the other hand, the mechanism of the water percolation on the changes of material in the natural field furrow slice are gradually understood. The purpose of this experiment is to know the effect of the rice cultivation on the chemical and physical changes of material in the water-logged paddy soil. Obtained results are as follows. 1. The physical and chemical changes on the water-logged paddy soil in the non-planted control-plot were nearly the same as the beaker or column tube experiment, while in the planted plot, slightly altered patterns were observed. 2. The relation between the number of tillers and total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, Fe and Mn in the leachate showed very high significance. T hisresult showed that the leaching of those cation was promoted by growing of the rice r- of the rice root. 3. On the other hand, the concentration of the potassium, silica and phosphorus in leachates was gradually decreased and that of $NH_4$-N could not detect after the stage of active tillering. These facts revealed that such components were absorbed by rice plant. 4. The highly significant correlation between the number of tillers and the concentration of the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn in the percolated water was observed except that of $Mg^{{+}{+}}$. It was also showed that the rice root promoted the leaching of those cation. 5. The very high significance in the correlation between $HCO_3{^-}$ and the number of tillers indicated that the higher activity of the rice root was, the more $HCO_3{^-}$ concentration in the leachate was increased. 6. The relationship between the $HCO_3{^-}$ and the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn was appeared very highly significant. $HCO_3{^-}$, the metabolite of the rice root, promoted the leaching of $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$ and Mn. This fact might be a result that these cations were leached as the form of bicarbonate. 7. The iron in the leachate was the form of $Fe^{{+}{+}}$ and the correlation between $Fe^{{+}{+}}$ and $HCO_3{^-}$ was very highly significant. This result indicated that it seemed to be ferrous bicarbonate when it is leached out. 8. In the rhizosphere, ferrous iron was decreased gradually and the concentration of glucose was as high as 2 to 3 times in comparison with the other parts of the soil. These facts were the same as the previous reports in which rhizosphere was oxidized by the oxigen excreted from the root, and was enriched by the organic matter which was also excreted from the root and accumulated residues of the root. 9. ${\beta}$-Glucosidase and phosphatase activity in the rhizosphere was higher than that of the other parts of the soil. This facts might be attributed to the vigorous activity of microorganism in the rhizosphere where glucose concentration was high. 10. The pH in the leachate of the planted plot was lower than that of control, and the Eh on the planted soil was elevated in the last stage.

  • PDF

Food Components of Wild and Cultured Fresh Water Fishes (천연 및 양식산 담수어의 식품성분)

  • KIM Kyung-Sam;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.195-211
    • /
    • 1986
  • The object of this study is to obtain fundamental data on cultured fishes produced in Korea to improve their food components. For this purpose, the food components of cultured fresh water fishes such as eel, Anguilla japonica, snakehead, Channa argus, and common carp, Cyprinus carpio, were investigated and compared with those of the wild ones. The results obtained are summarized as follows: 1. Common characteristics in the proximate composition were that wild fish was higher in crude protein content and lower in crude lipid content than those of cultured one. 2. Among the 9 kinds of minerals analyzed in all the samples, sodium, potassium, calcium and magnesium contents were absolutely predominant being more than $99.52\%$. These four elements in feedstuff also occupied $99.68{\sim}99.92%$ of total minerals. 3. The neutral lipids of wild and cultured eel, snakehead and common carp occupied $55.7{\sim}95.8%$ of lipid fractions, while the content of the phospholipids in snakehead was particularly higher than those of others. 4. The neutral lipids of wild and cultured eel, snakehead and common carp mainly consisted of triglycerides ($85{\sim}95%$), and a little quantity of diglycerides, monoglycerides, free sterol ester and hydrocarbon were also identified in the neutral lipid. 5. The phospolipids of eel and common carp were mainly occupied by phosphatidyl choline ($71.3{\sim}83.9%$), followed by phosphatidyl ethanolamine ($12.1{\sim}23.5%$) and phosphatidyl serine ($7.5{\sim}13.8%$). The phospholipids of snakhead consisted of phosphatidyl choline ($50.7{\sim}64.5%$), phosphatidyl ethanolamine ($28.0{\sim}35.5%$) and phosphatidyl serine ($7.5{\sim}13.8%$). Generally, phosphatidyl choline content was higher in wild fish than in cultured one, while phosphatidyl ethanolamine and phosphatidyl serine contents were higher in cultured one. 6. The major fatty acids in total lipid of wild eel, snakehead and common carp were $C_{16:0}\;and\;C_{20:5}$, while those in cultured ones were $C_{18:1},\;C_{18:2}\;and\;C_{22:6}$. The fatty acid composition of neutral lipids showed similar tendency to that of total lipid, and the main fatty acids in phospholipids of cultured fishes were $C_{18:1}\;and\;C_{18:2}$. In glycolipids, $C_{20:5}\;and\;C_{22:6}$ were higher in wild fishes, while $C_{18:2}$ were higher in cultured ones. 7. Total amino acids contents of wild and cultured eel were nearly the same, being $16.65\%$ ana $15.99\%$ respectively. The major amino acids of wild and cultured fish were glutamic acid, leucine, aspartic acid and lysine in order. In snakehead, the contents of aspartic acid and proline in cultured fish were higher than those in wild one, while the contents of glutamic acid, alanine, glycine were higher in the wild one. Total amino acid content of cultured common carp was $21.7\%$ compared with $17.08\%$ in wild one. The contents of glutamic acid, aspartic acid, glycine, proline and alanine occupied higher quantities in cultured common carp compared with those in wild one while the other amino acids revealed no significant difference. 8. Aspartic acid in free amino acids of cultured eel held $1.0\%$ of total free amino acids, while that in wild eel held $2.9\%$. Histidine, arginine and tyrosine content of cultured fish were two times higher than those of wild one. But free amino acid composition of samples seemed to be no marked differences according to cultured places. The contents of arginine, aspartic acid, glutamic acid, methionine and phenylalanine of snakehead ware higher in wild one than in cultured one, while the contents of lysine, histidine, glycine, and alanine ware higher in cultured one. In free amino acids content of wild common carp, histidine, glycine and lysine occupied $76.9\%$ of total free amino acids. Lysine, histidine, aspartic acid, alanine, valine and leucine were higher in wild one compared with those of cultured one, while glycine and tyrosine contents were higher in cultured fish.

  • PDF

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Comparison of the Physicochemical Properties of Meat and Viscera of Dried Abalone (Haliotis discus hannai) Prepared using Different Drying Methods (건조방법에 따른 건조 전복 (Haliotis discus hannai)의 이화학적 특성 비교)

  • Park, Jeong-Wook;Lee, Young-Jae;Park, In-Bae;Shin, Gung-Won;Jo, Yeong-Cheol;Koh, So-Mi;Kang, Seong-Gook;Kim, Jeong-Mok;Kim, Hae-Seop
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.686-698
    • /
    • 2009
  • We sought basic data for product development and storage improvement of abalone. We explored drying methodologies, such as shade drying, cold air drying, and vacuum freeze drying. We also examined various physicochemical features of both meat and viscera. Raw abalone meat had $78.88{\pm}1.01%$ moisture, $9.24{\pm}0.27%$ crude protein, and $10.05{\pm}0.81%$ carbohydrate (all w/w). The moisture level of dried abalone meat was highest after cold air drying, at $18.38{\pm}0.91%$, and lowest after vacuum freeze drying, at $1.05{\pm}0.05%$. The total amino acid content of raw abalone meat was $17,124.05{\pm}493.18\;mg%$, and fell after shade-drying to $12,969.92{\pm}583.65\;mg%$, and to $13,328.78{\pm}653.11\;mg%$ after cold air drying. The total free amino acid content of raw abalone meat was $4,261.99{\pm}106.55\;mg%$, and rose after shade-drying to $6,336.50{\pm}285.15\;mg%$, to $5,072.04{\pm}248.53\;mg%$ after cold air drying, and to $4,638.85{\pm}218.03\;mg%$ after vacuum freeze drying. The fatty acid proportions in raw abalone meat were $47.00{\pm}0.99%$ saturated, $22.18{\pm}1.05%$ monounsaturated, and $30.82{\pm}1.45%$ polyunsaturated. In the viscera, however, the proportions were $36.72{\pm}0.74%$ saturated, $25.44{\pm}1.12%$ monounsaturated, and $37.84{\pm}1.67%$ polyunsaturated. The contents of chondroitin sulfate in raw abalone were $11.95{\pm}0.35%$ in meat and $7.71{\pm}0.19%$ in viscera (both w/w). After shade-drying, the chondroitin sulfate content was $16.57{\pm}0.90%$ in meat and $9.24{\pm}0.50%$ in viscera. The figures after cold air drying were $16.17{\pm}0.79%$ and $12.44{\pm}0.61%$, and those after vacuum freeze drying $25.17{\pm}1.16%$ and $15.22{\pm}0.70%$ (thus including the highest meat content). The level of collagen in raw abalone was $69.80{\pm}3.07\;mg/g$ in meat and $40.62{\pm}1.79\;mg/g$ in viscera. Meat and viscera dried in the shade had $144.05{\pm}7.78\;mg/g$ and $44.16{\pm}2.39\;mg/g$ collagen, respectively, whereas the figures after cold air drying were $133.29{\pm}6.53\;mg/g$ and $69.20{\pm}3.39\;mg/g$, and after vacuum freeze drying $137.51{\pm}6.33\;mg/g$ and $60.61{\pm}2.79\;mg/g$. Volatile basic nitrogen values of raw abalone showed a higher content in viscera, at $19.01{\pm}0.84\;mg%$, compared to meat ($10.10{\pm}0.44\;mg%$). The value for shade-dried abalone meat was $136.77{\pm}7.37\;mg%$ and that of viscera $197.97{\pm}10.69\;mg%$. After cold air drying the meat and visceral values were $27.32{\pm}1.34\;mg%$ and $71.37{\pm}3.50\;mg%$, respectively.

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF

Study on the Technological System of the Cooperative Cultivation of Paddy Rice in Korea (수도집단재배의 기술체계에 관한 연구)

  • Min-Shin Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.129-177
    • /
    • 1970
  • For the purpose of establishing the systematized technical scheme of the cooperative rice cultivation which has most significant impact to improve rice productivity and the farm management, the author have studied the cultivation practices, and the variation of rice growth and yield between the cooperative rice cultivation and the individual rice cultivation at random selected 18 paddy fields. The author also have investigated through comparative method on the cultivation practices, management, organization and operation scheme of the two different rice cultivation methods at 460 paddy fields. The economic feasibility has been ana lysed and added in this report. The results obtained from this study are summarized as follows; 1. In the nursery, the average amount of fertilizer application, especially, phosphate and potassium, and the frequency of chemicals spray for the disease, insect and pest control at the cooperative rice cultivation are significantly higher than those of the individual rice cultivation. 2. The cultivation techniques of the cooperative rice farming after the transplanting can be characterized by a) the earlier transplanting of rice, b) the denser hills per unit area and the lesser number of seedlings per hill, c) the application of larger quantities of fertilizer including nitrogen, phosphate and potassium, d) more divided application of fertilizers, split doses of the nitrogen and potassium, e) the increased frequencies of the chemicals spray for the prevention of disease, insect and pest damages. 3. The rate of lodging in the cooperative rice cultivation was slightly higher than that of the individual rice cultivation, however, the losses of rice yield owing to the occurrence of rice stem borer and grass leaf roller in the cooperative rice cultivation were lower than that of the individual rice cultivation. 4. The culm length, panicle length, straw weight and grain-straw ratio are respectively higher at the cooperative rice cultivation, moreover, the higher variation of the above factors due to different localities of the paddy fields found at the individual rice cultivation. 5. The number of panicles, number of flowers per panicle and the weight of 1, 000 grains, those contributing components to the rice yield were significantly greater in the cooperative rice cultivation, however, not clear difference in the maturing rate was observed. The variation coefficient of the yield component in the cooperative cultivation showed lower than that or the individual rice cultivation. 6. The average yield of brown rice per 10 are in the cooperative rice cultivation obtained 459.0 kilograms while that of the individual rice cultivation brought 374.8 kilograms. The yield of brown rice in the cooperative rice cultivation increased 84.2 kilogram per 10 are over the individual rice cultivation. With lower variation coefficient of the brown rice yield in the cooperative rice cultivation, it can be said that uniformed higher yield could be obtained through the cooperative rice cultivation. 7. Highly significant positive correlations shown between the seeding date and the number of flowers per panicle, the chemical spray and the number of flowers per panicle, the transplanting date and the number of flowers per panicle, phosphate application and yield, potassium application and maturing rate, the split application of fertilizers and yield. Whilst the significant negative correlation was shown between the transplanting date and the maturing rate 8. The results of investigation from 480 paddy fields obtained through comparative method on the following items are identical in general with those obtained at 18 paddy fields: Application of fertilizers, chemical spray for the control of disease, insects and pests both in the nursery and the paddy field, transplanting date, transplanting density, split application of fertilizers and yield n the paddy fields. a) The number of rice varieties used in the cooperative rice cultivation were 13 varieties while the individual rice cultivation used 47 varieties. b) The cooperative rice cultivation has more successfully adopted improved cultivation techniques such as the practice of seed disinfection, adoption of recommended seeding amount, fall ploughing, application of red soil, introduction of power tillers, the rectangular-type transplanting, midsummer drainage and the periodical irrigation. 9. The following results were also obtained from the same investigation and they are: a) In the cooperative rice cultivation, the greater part of the important practices have been carried out through cooperative operation including seed disinfection, ploughing, application of red soil and compost, the control of disease, insects and pests, harvest, threshing and transportation of the products. b) The labor input to the nursery bed and water control in the cooperative rice cultivation was less than that of the individual rice cultivation while the higher rate of labor input was resulted in the red soil and compost application. 10. From the investigation on the organization and operation scheme of the cooperative rice cultivation, the following results were obtained: a) The size of cooperative rice cultivation farm was varied from. 3 ha to 7 ha and 5 ha farm. occupied 55.9 percent of the total farms. And a single cooperative farm was consisted of 10 to 20 plots of paddies. b) The educational back ground of the staff members involved in the cooperative rice cultivation was superior than that of the individual rice cultivation. c) All of the farmers who participated to the questionaires have responded that the cooperative rice cultivation could promise the increased rice yield mainly through the introduction of the improved method of fertilizer application and the effective control of diseases, insects and pests damages. And the majority of farmers were also in the opinion that preparation of the materials and labor input can be timely carried out and the labor requirement for the rice cultivation possibly be saved through the cooperative rice cultivation. d) The farmers who have expressed their wishes to continue and to make further development of the cooperative rice cultivation was 74.5 percent of total farmers participated to the questionaires. 11. From the analysis of economical feasibility on the two different methods of cultivation, the following results were obtained: a) The value of operation cost for the compost, chemical fertilizers, agricultural chemicals and labor input in the cooperative rice cultivation was respectively higher by 335 won, 199 won, 288 won and 303 won over the individual rice cultivation. However, the other production costs showed no distinct differences between the two cultivation methods. b) Although the total value of expenses for the fertilizers, agricultural chemicals, labor input and etc. in the cooperative rice cultivation were approximately doubled to the amount of the individual rice cultivation, the net income, substracted operation costs from the gross income, was obtained 24, 302 won in the cooperative rice cultivation and 20, 168 won was obtained from the individual rice cultivation. Thereby, it can be said that net income from the cooperative rice cultivation increased 4, 134 won over the individual rice cultivation. It was revealed in this study that the cooperative rice cultivation has not only contributed to increment of the farm income through higher yield but also showed as an effective means to introduce highly improved cultivation techniques to the farmers. It may also be concluded, therefore, the cooperative rice cultivation shall continuously renovate the rice production process of the farmers.

  • PDF

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF

A Study on the Effect of Water Soluble Extractive upon Physical Properties of Wood (수용성(水溶性) 추출물(抽出物)이 목재(木材)의 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.13-44
    • /
    • 1982
  • 1. Since long time ago, it has been talked about that soaking wood into water for a long time would be profitable for the decreasing of defects such as checking, cupping and bow due to the undue-shrinking and swelling. There are, however, no any actual data providing this fact definitly, although there are some guesses that water soluble extractives might effect on this problem. On the other hand, this is a few work which has been done about the effect of water soluble extractives upon the some physical properties of wood and that it might be related to the above mentioned problem. If man does account for that whether soaking wood into water for a long time would be profitable for the decreasing of defects due to the undue-shrinking and swelling in comparison with unsoaking wood or not, it may bring a great contribution on the reasonable uses of wood. To account for the effect of water soluble extractives upon physical properties of wood, this study has been made at the wood technology laboratory, School of Forestry, Yale university, under competent guidance of Dr. F. F. Wangaard, with the following three different species which had been provided at the same laboratory. 1. Pinus strobus 2. Quercus borealis 3. Hymenaea courbaril 2. The physical properties investigated in this study are as follows. a. Equilibrium moisture content at different relative humidity conditions. b. Shrinkage value from gre condition to different relative humidity conditions and oven dry condition. c. Swelling value from oven dry condition to different relative humidity conditions. d. Specific gravity 3. In order to investigate the effect of water soluble extractives upon physical properties of wood, the experiment has been carried out with two differently treated specimens, that is, one has been treated into water and the other into sugar solution, and with controlled specimens. 4. The quantity of water soluble extractives of each species and the group of chemical compounds in the extracted liquid from each species have shown in Table 36. Between species, there is some difference in quantity of extractives and group of chemical compounds. 5. In the case of equilibrium moisture contents at different relative humidity condition, (a) Except the desorption case at 80% R. H. C. (Relative Humidity Condition), there is a definite line between untreated specimens and treated specimens that is, untreated specimens hold water more than treated specimens at the same R.H.C. (b) The specimens treated into sugar solution have shown almost the same tendency in results compared with the untreated specimens. (c) Between species, there is no any definite relation in equilibrium moisture content each other, however E. M. C. in heartwood of pine is lesser than in sapwood. This might cause from the difference of wood anatomical structure. 6. In the case of shrinkage, (a) The shrinkage value of the treated specimen into water is more than that of the untreated specimens, except anyone case of heartwood of pine at 80% R. H. C. (b) The shrinkage value of treated specimens in the sugar solution is less than that of the others and has almost the same tendency to the untreated specimens. It would mean that the penetration of some sugar into the wood can decrease the shrinkage value of wood. (c) Between species, the shrinkage value of heartwood of pine is less than sapwood of the same, shrinkage value of oak is the largest, Hymenaea is lesser than oak and more than pine. (d) Directional difference of shrinkage value through all species can also see as other all kind of species previously tested. (e) There is a definite relation in between the difference of shrinkage value of treated and untreated specimens and amount of extractives, that is, increasing extractives gives increasing the difference of shrinkage value between treated and untreated specimens. 7. In the case of swelling, (a) The swelling value of treated specimens is greater than that of the untreated specimens through all cases. (b) In comparison with the tangential direction and radial direction, the swelling value of tangential direction is larger than that of radial direction in the same species. (c) Between species, the largest one in swelling values is oak and the smallest pine heartwood, there are also a tendency that species which shrink more swell also more and, on the contrary, species which shrink lesser swell also lesser than the others. 8. In the case of specific gravity, (a) The specific gravity of the treated specimens is larger than that of untreated specimens. This reversed value between treated and untreated specimens has been resulted from the volume of specimen of oven dry condition. (b) Between species, there are differences, that is, the specific gravity of Hymenaea is the largest one and the sapwood of pine is the smallest. 9. Through this investigation, it has been concluded that soaking wood into plain water before use without any special consideration may bring more hastful results than unsoaking for use of wood. However soaking wood into the some specially provided solutions such as salt water or inorganic matter may be dissolved in it, can be profitable for the decreasing shrinkage and swelling, checking, shaking and bow etc. if soaking wood into plain water might bring the decreasing defects, it might come from even shrinking and swelling through all dimension.

  • PDF