• Title/Summary/Keyword: *Secrecy Outage Probability

Search Result 25, Processing Time 0.02 seconds

Joint Beamforming and Jamming for Physical Layer Security

  • Myung, Jungho;Heo, Hwanjo;Park, Jongdae
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.898-905
    • /
    • 2015
  • In this paper, we consider a joint beamforming and jamming design to enhance physical layer security against potential multiple eavesdroppers in a multiple-input and single-output cellular broadcast channel. With perfect channel state information at the base station, we propose various design approaches to improve the secrecy of the target user. Among the proposed approaches, the combined beamforming of maximum ratio transmission and zero-forcing transmission with a combination of maximum ratio jamming and zero-forcing jamming (MRT + ZFT with MRJ + ZFJ) shows the best security performance because it utilizes the full transmit antenna dimensions for beamforming and jamming with an efficient power allocation. The simulation results show that the secrecy rate of this particular proposed approach is better than the rates of the considered conventional approaches with quality-of-service and outage probability constraints.

Self-jamming based opportunistic relaying for a cooperative network (협력 네트워크를 위한 자가 전파방해 기반 기회적 중계 기법)

  • Kim, Jinsu;Lee, Jae Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.371-372
    • /
    • 2012
  • 본 논문은 협력 네트워크(cooperative network)에서 무선 채널의 보안성(security) 강화를 위한 자가 전파방해(self-jamming) 기반 기회적 중계(opportunistic relaying) 기법을 제안한다. 단일 송신 단말 (source)과 단일 수신 단말(destination)이 다중 중계 단말(relay)의 협력을 통해 송수신하는 이중 홉(dualhop) 네트워크에서 도청 단말(eavesdropper)에 의한 정보 절취를 최소화하기 위해 자가 전파방해 기법과 기회적 중계 기법을 결합한다. 이를 통해 무선 채널의 방송(broadcasting) 특성에 기인한 도청 용이성을 저하 시키고, 다중 중계 단말의 송신 전력을 최소화하여 협력 네트워크의 수명(lifetime)을 연장한다. 컴퓨터 모의실험 결과를 통해 제안된 기법이 다중 중계기가 있는 이중 홉 협력 네트워크에서 보안 전송률(secrecy rate)의 불능확률(outage probability) 성능을 제고함을 보인다.

  • PDF

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

Device-to-Device Communication Power Control Technique for Ensuring Communication Security of Cellular System (셀룰러 망 통신보안을 위한 D2D 통신 송신전력 제어 기법)

  • Lee, Kisong;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1100-1105
    • /
    • 2017
  • In this paper, we propose a power control technique for D2D communication in the heterogenous network consisting of cellular and D2D communication systems. Although the transmit signal of D2D communication degrades the performance of cellular system by interfering the signal reception at CU in the conventional heterogenous networks without eavesdroppers, it can be utilized as jamming signal for preventing other devices from recovering the transmitted information if there are eavesdroppers in the network. The proposed power control technique maximizes the achievable rate of D2D communication while ensuring the target security performance of cellular communication system. Through simulation results, we validate the analysis results and compare the performance with the conventional D2D communication scheme that utilizes its full transmit power for maximizing the achievable rate regardless of the performance of cellular system.

Performance Analysis of the Amplify-and-Forward Scheme under Interference Constraint and Physical Layer Security (물리 계층 보안과 간섭 제약 환경에서 증폭 후 전송 기법의 성능 분석)

  • Pham, Ngoc Son;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.179-187
    • /
    • 2014
  • The underlay protocol is a cognitive radio method in which secondary or cognitive users use the same frequency without affecting the quality of service (QoS) for the primary users. In addition, because of the broadcast characteristics of the wireless environment, some nodes, which are called eavesdropper nodes, want to illegally receive information that is intended for other communication links. Hence, Physical Layer Security is applied considering the achievable secrecy rate (ASR) to prevent this from happening. In this paper, a performance analysis of the amplify-and-forward scheme under an interference constraint and Physical Layer Security is investigated in the cooperative communication mode. In this model, the relays use an amplify-and- forward method to help transmit signals from a source to a destination. The best relay is chosen using an opportunistic relay selection method, which is based on the end-to-end ASR. The system performance is evaluated in terms of the outage probability of the ASR. The lower and upper bounds of this probability, based on the global statistical channel state information (CSI), are derived in closed form. Our simulation results show that the system performance improves when the distances from the relays to the eavesdropper are larger than the distances from the relays to the destination, and the cognitive network is far enough from the primary user.