• Title/Summary/Keyword: (c)-comparison function

Search Result 324, Processing Time 0.022 seconds

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF

Lung Uptake of $^{99m}Tc-sestamibi$ during Routine Gated Exercise SPECT Imaging : Comparison with Left Ventricular Ejection Fraction and Severity of Perfusion Defect (일상적인 운동 부하 게이트 심근 관류 SPECT에서 $^{99m}Tc-sestamibi$ 폐섭취 : 좌심실 구혈률과 관류 결손 정도와의 비교)

  • Jeong, Shin-Young;Lee, Jae-Tae;Bae, Jin-Ho;Ahn, Byeong-Cheol;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.83-93
    • /
    • 2003
  • Background: Lung-to-heart uptake ratio (LHR) in $^{201}Tl-chloride$ myocardial perfusion scan is believed to be a reliable marker for left ventricular (LV) dysfunction, but the clinical value of LHR is controversial for $^{99m}Tc-MIBI$ imaging. Furthermore, most of results suggesting lung uptake of $^{99m}Tc-MIBI$ as a potential marker for LV dysfunction used immediate post-stress images, instead of routine images acquired 1 hour after tracer injection. The goal of our study was to investigate whether LHR evaluated with routine gated $^{99m}Tc-MIBI$ imaging can reflect the degree of perfusion defect or left ventricular performance. Subjects and Methods: 241 patients underwent exercise $^{99m}Tc-MIBI$ myocardial SPECT were classified into normal myocardial perfusion (NP, n=135) and abnormal myocardial perfusion (AP, n=106) group according to the presence of perfusion defect. LHR was calculated from anterior projection image taken at 1-hour after injection. Two legions of interest (ROIs) were placed on left lung above LV and on myocardium showing the highest radioactivity. Subjects were classified by left ventricular ejection fraction (LVEF), as Gr-I: >50%, Gr-II: 36-50%, Gr-III: <36% and by summed stress score (SSS), as Gr-A: <4, Gr-B: 4-8, Gr-C: 9-13, Gr-D: >13, LHR was compared among these groups. Results: In NP group(n=135), LHR, were higher in men than women ($men:\;0.311{\pm}0.03,\;women:\;0.296{\pm}0.03,\;p<0.05$). Significant difference, in LHR were found between NP and AP groups both for men and women ($men:\;0.311{\pm}0.03\;vs\;.\;0.331{\pm}0.06,\;women:\;0.296{\pm}0.03\;vs.\;0.321{\pm}0.07.\;p<0.05$). There were weak negative correlation between LHR and LVEF (r=-0.342, p<0.05) and weak positive correlation between LHR and SSS (r=0.478, p<0.05) in men, but not in women (LVEF: r=-0.279, p=0.100, SSS: r=0.276, p=0.103). Increased LHR was defined when for more than mean + 2SD value ($men{\geq}0.38,\;women{\geq}0.37$) of the LHR of the subject with normal perfusion. Increased LHR were observed more frequently in subjects with lower LVEF (Gr-I: 11.1%, Gr-II: 27.0%, Gr-III: 35.4%, p<0.05) and higher SSS(Gr-A: 14.0%, Gr-B: 5.7%, Gr-C: 18.2%, Gr-D: 40.7%, p<0.05). Conclusions: LHRs obtained from routine $^{99m}Tc-MIBI$ gated SPECT images were weakly correlated with LVEF and perfusion defect. Although significant overlaps were observed between normal and abnormal perfusion group, LHRs could be used as an indirect marker of severe perfusion defect or reduced left ventricular function.

Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice (논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I))

  • 류한열;김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF

An Intervention Study on Integration of Family Planning and Maternal/Infant Care Services in Rural Korea (가족계획과 모자보건 통합을 위한 조산원의 투입효과 분석 -서산지역의 개입연구 평가보고-)

  • Bang, Sook;Han, Seung-Hyun;Lee, Chung-Ja;Ahn, Moon-Young;Lee, In-Sook;Kim, Eun-Shil;Kim, Chong-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.20 no.1 s.21
    • /
    • pp.165-203
    • /
    • 1987
  • This project was a service-cum-research effort with a quasi-experimental study design to examine the health benefits of an integrated Family Planning (FP)/Maternal & Child health (MCH) Service approach that provides crucial factors missing in the present on-going programs. The specific objectives were: 1) To test the effectiveness of trained nurse/midwives (MW) assigned as change agents in the Health Sub-Center (HSC) to bring about the changes in the eight FP/MCH indicators, namely; (i)FP/MCH contacts between field workers and their clients (ii) the use of effective FP methods, (iii) the inter-birth interval and/or open interval, (iv) prenatal care by medically qualified personnel, (v) medically supervised deliveries, (vi) the rate of induced abortion, (vii) maternal and infant morbidity, and (viii) preinatal & infant mortality. 2) To measure the integrative linkage (contacts) between MW & HSC workers and between HSC and clients. 3) To examine the organizational or administrative factors influencing integrative linkage between health workers. Study design; The above objectives called for quasi-experimental design setting up a study and control area with and without a midwife. An active intervention program (FP/MCH minimum 'package' program) was conducted for a 2 year period from June 1982-July 1984 in Seosan County and 'before and after' surveys were conducted to measure the change. Service input; This study was undertaken by the Soonchunhyang University in collaboration with WHO. After a baseline survery in 1981, trained nurses/midwives were introduced into two health sub-centers in a rural setting (Seosan county) for a 2 year period from 1982 to 1984. A major service input was the establishment of midwifery services in the existing health delivery system with emphasis on nurse/midwife's role as the link between health workers (nurse aids) and village health workers, and the referral of risk patients to the private physician (OBGY specialist). An evaluation survey was made in August 1984 to assess the effectiveness of this alternative integrated approach in the study areas in comparison with the control area which had normal government services. Method of evaluation; a. In this study, the primary objective was first to examine to what extent the FP/MCH package program brought about changes in the pre-determined eight indicators (outcome and impact measures) and the following relationship was first analyzed; b. Nevertheless, this project did not automatically accept the assumption that if two or more activities were integrated, the results would automatically be better than a non-integrated or categorical program. There is a need to assess the 'integration process' itself within the package program. The process of integration was measured in terms of interactive linkages, or the quantity & quality of contacts between workers & clients and among workers. Intergrative linkages were hypothesized to be influenced by organizational factors at the HSC clinic level including HSC goals, sltrurture, authority, leadership style, resources, and personal characteristics of HSC staff. The extent or degree of integration, as measured by the intensity of integrative linkages, was in turn presumed to influence programme performance. Thus as indicated diagrammatically below, organizational factors constituted the independent variables, integration as the intervening variable and programme performance with respect to family planning and health services as the dependent variable: Concerning organizational factors, however, due to the limited number of HSCs (2 in the study area and 3 in the control area), they were studied by participatory observation of an anthropologist who was independent of the project. In this observation, we examined whether the assumed integration process actually occurred or not. If not, what were the constraints in producing an effective integration process. Summary of Findings; A) Program effects and impact 1. Effects on FP use: During this 2 year action period, FP acceptance increased from 58% in 1981 to 78% in 1984 in both the study and control areas. This increase in both areas was mainly due to the new family planning campaign driven by the Government for the same study period. Therefore, there was no increment of FP acceptance rate due to additional input of MW to the on-going FP program. But in the study area, quality aspects of FP were somewhat improved, having a better continuation rate of IUDs & pills and more use of effective Contraceptive methods in comparison with the control area. 2. Effects of use of MCH services: Between the study and control areas, however, there was a significant difference in maternal and child health care. For example, the coverage of prenatal care was increased from 53% for 1981 birth cohort to 75% for 1984 birth cohort in the study area. In the control area, the same increased from 41% (1981) to 65% (1984). It is noteworthy that almost two thirds of the recent birth cohort received prenatal care even in the control area, indicating that there is a growing demand of MCH care as the size of family norm becomes smaller 3. There has been a substantive increase in delivery care by medical professions in the study area, with an annual increase rate of 10% due to midwives input in the study areas. The project had about two times greater effect on postnatal care (68% vs. 33%) at delivery care(45.2% vs. 26.1%). 4. The study area had better reproductive efficiency (wanted pregancies with FP practice & healthy live births survived by one year old) than the control area, especially among women under 30 (14.1% vs. 9.6%). The proportion of women who preferred the 1st trimester for their first prenatal care rose significantly in the study area as compared to the control area (24% vs 13%). B) Effects on Interactive Linkage 1. This project made a contribution in making several useful steps in the direction of service integration, namely; i) The health workers have become familiar with procedures on how to work together with each other (especially with a midwife) in carrying out their work in FP/MCH and, ii) The health workers have gotten a feeling of the usefulness of family health records (statistical integration) in identifying targets in their own work and their usefulness in caring for family health. 2. On the other hand, because of a lack of required organizational factors, complete linkage was not obtained as the project intended. i) In regards to the government health worker's activities in terms of home visiting there was not much difference between the study & control areas though the MW did more home visiting than Government health workers. ii) In assessing the service performance of MW & health workers, the midwives balanced their workload between 40% FP, 40% MCH & 20% other activities (mainly immunization). However, $85{\sim}90%$ of the services provided by the health workers were other than FP/MCH, mainly for immunizations such as the encephalitis campaign. In the control area, a similar pattern was observed. Over 75% of their service was other than FP/MCH. Therefore, the pattern shows the health workers are a long way from becoming multipurpose workers even though the government is pushing in this direction. 3. Villagers were much more likely to visit the health sub-center clinic in the study area than in the control area (58% vs.31%) and for more combined care (45% vs.23%). C) Organization factors (admistrative integrative issues) 1. When MW (new workers with higher qualification) were introduced to HSC, it was noted that there were conflicts between the existing HSC workers (Nurse aids with less qualification than MW) and the MW for the beginning period of the project. The cause of the conflict was studied by an anthropologist and it was pointed out that these functional integration problems stemmed from the structural inadequacies of the health subcenter organization as indicated below; i) There is still no general consensus about the objectives and goals of the project between the project staff and the existing health workers. ii) There is no formal linkage between the responsibility of each member's job in the health sub-center. iii) There is still little chance for midwives to play a catalytic role or to establish communicative networks between workers in order to link various knowledge and skills to provide better FP/MCH services in the health sub-center. 2. Based on the above findings the project recommended to the County Chief (who has power to control the administrative staff and the technical staff in his county) the following ; i) In order to solve the conflicts between the individual roles and functions in performing health care activities, there must be goals agreed upon by both. ii) The health sub·center must function as an autonomous organization to undertake the integration health project. In order to do that, it is necessary to support administrative considerations, and to establish a communication system for supervision and to control of the health sub-centers. iii) The administrative organization, tentatively, must be organized to bind the health worker's midwive's and director's jobs by an organic relationship in order to achieve the integrative system under the leadership of health sub-center director. After submitting this observation report, there has been better understanding from frequent meetings & communication between HW/MW in FP/MCH work as the program developed. Lessons learned from the Seosan Project (on issues of FP/MCH integration in Korea); 1) A majority or about 80% of the couples are now practicing FP. As indicated by the study, there is a growing demand from clients for the health system to provide more MCH services than FP in order to maintain the achieved small size of family through FP practice. It is fortunate to see that the government is now formulating a MCH policy for the year 2,000 and revising MCH laws and regulations to emphasize more MCH care for achieving a small size family through family planning practice. 2) Goal consensus in FP/MCH shouBd be made among the health workers It administrators, especially to emphasize the need of care of 'wanted' child. But there is a long way to go to realize the 'real' integration of FP into MCH in Korea, unless there is a structural integration FP/MCH because a categorical FP is still first priority to reduce the rate of population growth for economic reasons but not yet for health/welfare reasons in practice. 3) There should be more financial allocation: (i) a midwife should be made available to help to promote the MCH program and coordinate services, (in) there should be a health sub·center director who can provide leadership training for managing the integrated program. There is a need for 'organizational support', if the decision of integration is made to obtain benefit from both FP & MCH. In other words, costs should be paid equally to both FP/MCH. The integration slogan itself, without the commitment of paying such costs, is powerless to advocate it. 4) Need of management training for middle level health personnel is more acute as the Government has already constructed 90 MCH centers attached to the County Health Center but without adequate manpower, facilities, and guidelines for integrating the work of both FP and MCH. 5) The local government still considers these MCH centers only as delivery centers to take care only of those visiting maternity cases. The MCH center should be a center for the managment of all pregnancies occurring in the community and the promotion of FP with a systematic and effective linkage of resources available in the county such as i.e. Village Health Worker, Community Health Practitioner, Health Sub-center Physicians & Health workers, Doctors and Midwives in MCH center, OBGY Specialists in clinics & hospitals as practiced by the Seosan project at primary health care level.

  • PDF