• Title/Summary/Keyword: (U,Gd)$O_2$

Search Result 33, Processing Time 0.021 seconds

Effect of $UO_2$ Powder Property and Oxygen Potential on Sintering Characteristics of $UO_2-Gd_2O_3$ Fuel

  • Song, Kun-Woo;Kim, Keon-Sik;Yoo, Ho-Sik;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.128-139
    • /
    • 1998
  • The effect of UO$_2$ powder property and oxygen potential on characteristics of sintered UO$_2$-Gd$_2$O$_3$ fuel pellets has been investigated. Two types of powder, mixture of AUC-UO$_2$ and Gd$_2$O$_3$powders (type I) and mixture of ADU-UO$_2$ and Gd$_2$O$_3$powders (type II), have been prepared, pressed, and sintered at 168$0^{\circ}C$ for 4 hours. Four sintering atmospheres with different mixing ratios of $CO_2$to H$_2$ gas ranging from 0 to 0.3 have been used. UO$_2$-Gd$_2$O$_3$ fuel has lower sintered density than UO$_2$ fuel, and the density drop is larger for powder type I than for powder type II. As the oxygen potential increases, the sintered density of UO$_2$-2wt% Gd$_2$O$_3$pellets increases but that of UO$_2$-10wt% Gd$_2$O$_3$ pellets decreases. It is found that pores are newly formed in UO$_2$-10wt% Gd$_2$O$_3$ pellets in accordance with the decrease in density. The grain size of UO$_2$-Gd$_2$O$_3$ fuel increases and a short range G4 distribution becomes homogeneous as the oxygen potential increases. A long range ed distribution and grain structure are inhomogeneous for powder type II. The lattice parameter of (U,Gd)O$_2$solid solution decreases linearly with Gd$_2$O$_3$ content. The dependence of UO$_2$-Gd$_2$O$_3$fuel characteristics on powder type and sintering atmosphere have been discussed.

  • PDF

Effects of Powder Property and Sintering Atmosphere on the Properties of Burnable Absorber Fuel : I. $UO_2-Gd_2O_3$ Fuel

  • K. W. Song;Kim, K. S.;H. S. Yoo;Kim, J. H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.171-176
    • /
    • 1997
  • UO$_2$-Gd$_2$O$_3$fuel has been sintered to study the effect of powder property and sintering atmospheres on densification and microstructure. Three types of powders have been used; AUC-UO$_2$ powder and ADU-UO$_2$ powder were mixed with Gd$_2$O$_3$ Powder, and co-milled AUC-UO$_2$ and Gd$_2$O$_3$ powder. UO$_2$-(2, 5, 10)wt% Gd$_2$O$_3$pellets have been sintered at 168$0^{\circ}C$ for 4 hours in the mixture of H$_2$ and $CO_2$ gases, of which oxygen potential has been controlled by the ratio of $CO_2$ to H$_2$ gas. Densities of UO$_2$-Gd$_2$O$_3$ fuel pellets are quite dependent on powder types, and UO$_2$-Gd$_2$O$_3$ fuel using co-milled UO$_2$ powder yields the highest density. A long range homogeneity of Gd is determined by powder mixing. As the oxygen potential of sintered atmosphere increases, the sintered densities of UO$_2$-Gd$_2$O$_3$ pellets decrease but grain size increases. In addition, (U, Gd)O$_2$ solid solution becomes more homogeneous. The UO$_2$-Gd$_2$O$_3$fuel having adequate density and homogeneous microstructure can be fabricated by co-milling powder and by high oxygen potential.

  • PDF

Luminescence Characteristics of Y2-xGdxO3:Eu3+ Thin film Grown by Pulsed Laser Ablation (PLD 방법으로 Si(100) 기판위에 증착한 Y2-xGdxO3:Eu3+/ 박막의 형광특성)

  • 이성수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.112-117
    • /
    • 2004
  • $Y_2$$_{-x}$G $d_{x}$ $O_3$:E $u^{3+}$(x=0.0, 0.3, 0.6, 1.0, 1.4) luminescent thin films have been grown on Si (100) substrates using pulsed laser deposition. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity, the surface morphology and photoluminescence (PL) of the films are highly dependent on the amount of Gd. The photoluminescence (PL) brightness data obtained from $Y_2$$_{-x}$G $d_{x}$ $O_3$:E $u^{3+}$ films grown under optimized conditions have indicated that Si (100) is one of promised substrates for the growth of high quality $Y_2$$_{-x}$G $d_{x}$ $O_3$:E $u^{3+}$ thin film red phosphor. In particular, the incorporation of Gd into $Y_2$ $O_3$ lattice could induce a remarkable increase of PL. The highest emission intensity was observed with $Y_{1.35}$G $d_{0.60}$ $O_3$: $E^{3+}$, whose brightness was increased by a factor of 1.95 in comparison with that of $Y_2$ $O_3$:E $u^{3+}$ films.3+/ films.films.lms.

Spark plasma sintering of UO2 fuel composite with Gd2O3 integral fuel burnable absorber

  • Papynov, E.K.;Shichalin, O.O.;Belov, A.A.;Portnyagin, A.S.;Buravlev, I.Yu;Mayorov, V.Yu;Sukhorada, A.E.;Gridasova, E.A.;Nomerovskiy, A.D.;Glavinskaya, V.O.;Tananaev, I.G.;Sergienko, V.I.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1756-1763
    • /
    • 2020
  • The paper studies spark plasma sintering (SPS) of industrially used UO2-based fuel containing integral fuel burnable absorber (IFBA) of neutrons Gd2O3. Densification dynamics of pristine UO2 powder and the one added with 2 and 8 wt% of Gd2O3 under ultrasonication in liquid has been studied under SPS conditions at 1050, 1250, and 1450 ℃. Effect of sintering temperature on phase composition as well as on O/U stoichiometry has been investigated for UO2 SPS ceramics. Sintering of uranium dioxide added with Gd2O3 yields solid solution (U,Gd)O2, which is isostructural to UO2. SEM with EDX and metallography were implemented to analyze the microstructure of the obtained UO2 ceramics and composite UO2-Gd2O3 one, particularly, open porosity, defects, and Gd2O3 distribution were studied. Microhardness, compressive strength and density were shown to reduce after addition of Gd2O3. Obtained results prove the hypothesis on formation of stable pores in the system of UO2-Gd2O3 due to Kirkendall effect that reduces sintering efficiency. The paper expands fundamental knowledge on pros and cons of fuel fabrication with IFBA using SPS technology.

Effect of $TiO_2$ and $Al(OH)_3$ on Sintering Behavior of $UO_2 - Gd_2 O_3$ Fuel Pellets

  • Kang, Ki-Won;Kim, Keon-Sik;Song, Kun-Woo;Yang, Jae-Ho;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.559-565
    • /
    • 2000
  • The sintering behavior of UO$_2$-Gd$_2$O$_3$fuel pellets under H$_2$gas has been investigated using dilatometry and XRD methods. The addition of TiO$_2$or Al(OH)$_3$increased the density and grain size. A density of 95% TD and a grain size larger than 6 ${\mu}{\textrm}{m}$ are achieved by the addition of 0.1 wt% TiO$_2$or Al(OH)$_3$. It was found that the densification of UO$_2$-Gd$_2$O$_3$pellets was suppressed in the temperature range of 1300 to 150$0^{\circ}C$, compared to UO$_2$pellets. The formation of a (U,Gd)O$_2$solid solution is the main reason for the suppression of densification. The role of TiO$_2$in densification and grain growth is discussed on the basis of the densification cuwe and ceramography.

  • PDF

Synthesis and Crystal Chemistry of New Actinide Pyrochlores (새로운 파이로클로어의 합성 및 결정화학적 특징)

  • ;;;Sergey V. Yudintsev
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.78-84
    • /
    • 2002
  • New pyrochlore-type phases($A_2$$B_2$$O_{7}$) were synthesized in the systems: CaO-C$eO_2$-T$iO_2$, CaO-$UO_2$(T$hO_2$)-Z$rO_2$, CaO-$UO_2$(T$hO_2$)-$Gd_2$$O_3$-T$iO_2$-Z$rO_2$, 및 CaO-T$hO_2$-S$nO_2$. The starting materials were pressed with the pressure of 200~400 MPa and sintered at 1500~ 155$0^{\circ}C$ for 4~8 hours in air and at 1300~ 135$0^{\circ}C$ for 5 ~50 hours under oxygen atmosphere. The products were characterized using XRD, SEM/EDS and TEM. In the bulk compositions of CaCe$Ti_2$$O_{7}$, CaTh$Zr_2$$O_{7}$,($Ca_{0.5}$ Gd$Th_{0.5}$)(ZrTi)$O_{7}$) ($Ca_{0.5}$Gd$Th_{0.5}$)(ZrTi)$O_{7}$, ($Ca_{0.5}$G$dU_{0.5}$)(ZrTi)$O_{7}$ and CaTh$Sn_2$$O_{7}$ , pyrochlore was the major phase, together with other oxide phase $of_2$$O_{7}$ fluorite structure. In the samples with target compositions CaU$Zr_2$$O_2$$Ca_{0.5}$ G$dU_{0.5}$)$Zr_2$T$iO_{7}$ pyrochlore was not identified, but a fluorite-structured phase was detected. The formation factor as the stable phase depended on crystal chemical characteristics of the actinide and lanthanide elements of the system concerned.

Sintering of a Mixture of $UO_2$ and $Gd_2 O_3$ Powders Doped With $Cr_2 O_3-SiO_2$

  • Kim, Keon-Sik;Song, Kun-Woo;Kang, Ki-Won;Yang, Jae-Ho;Kim, Jong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.386-396
    • /
    • 2001
  • Mixtures Of AUC-UO$_2$and Gd$_2$O$_3$ Powders doped With Cr$_2$O$_3$ or Cr$_2$O$_3$-SiO$_2$ were Pressed and sintered at 1730 t in hydrogen gas witk various water-vapor contents. The density of UO$_2$- 6wt% Gd$_2$O$_3$ pellets can be increased from 91% TD to 94.5% TD in 1 vol% $H_2O$-H$_2$ gases by the addition of 0.02wt% Cr$_2$O$_3$-(0.01~0.04) wt% SiO$_2$. The magnitude of density increase is much larger in (1~3 vol%) $H_2O$-H$_2$ gases than in 0.05 vol% $H_2O$-H$_2$ gas. The densification of U0$_2$- Gd$_2$O$_3$ compact is significantly delayed in the temperature range between 1300 and 1500 t , but that of compacts with Cr$_2$O$_3$-SiO$_2$ is not. The role of Cr$_2$O$_3$ and SiO$_2$ in densification is discussed.

  • PDF

Optical Properties of Infinite-Layer Superconductors $Sr_{0.9}$$Ln_{0.1}$Cu$O_2$ (LnLa, Gd, Sm) (무한층 초전도체 $Sr_{0.9}Ln_{0.1}CuO_2$(Ln=La, Gd, Sm)의 광학적 성질)

  • Mun, Mi-Ock;Park, Young-Sub;Kim, Kibum;Kim, Jae H.;A. B. Kuzmenko
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • We have measured the reflectivity of superconducting infinite-layer compounds $Sr_{0.9}$ $Ln_{0.1}$ Cu $O_2$ (Ln=La, Gd, Sm) with $T_{c}$ : 39 K using a Fourier-transform infrared spectrometer. We have identified the optical phonon modes from their infrared reflectivity and conductivity spectra and have proposed possible displacement patterns. The La- and the Gd-doped compounds exhibited only four ($2A_{2u}$ $+2E_{u}$) out of the five ($2A_{2u}$ $3E_{u}$) infrared-active phonons predicted by a group theoretical analysis whereas the Sm-doped compound exhibited all five modes. For the La-doped sample, we investigated the temperature dependence of the optical response functions in a wide temperature range of 7 - 300 K. In FIR region, the reflectivity is apparently enhanced below ~120 $cm^{-1}$ as temperature decreases across $T_{c}$. The value of $2$\Delta$/k_{B}$ $T_{c}$ is about 4.5, which is consistent with maximum gap value of d-wave $high- T_{c}$ cuprates.> c/ cuprates.uprates.s.

  • PDF

Effect of Gd Substitution for the Ca Site in the Bi1.84Pb0.34Sr1.91 ({Ca1-xGdx)2.03Cu3.06O10+δ(x=0.0~0.06) Superconductors

  • Lee, Min-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.405-409
    • /
    • 2003
  • The effect of substitution of Gd ions for Ca ions in the B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$(C $a_{1-x}$ G $d_{x}$)$_{2.03}$ C $u_{3.06}$ $O_{ 10+{\delta}}$/ (x=0.0~0.06) was investigated by measuring x-ray diffraction patterns, lattice constants, do resistivity and Hall effect. We found the solubility limit of Gd in the 110 K phase to be x < 0.015. Within the solubility limit, the c-axis seemed to decrease with increasing x. In the region of the 110 K single phase, the critical temperature $T_{c}$ gradually decreased with an increasing the Gd concentration x, corresponding to a small change of the carrier concentration.