• 제목/요약/키워드: (RNN) Recurrent neural network

검색결과 232건 처리시간 0.02초

순환 신경망에서 LSTM 블록을 사용한 영어와 한국어의 시편 생성기 비교 (Psalm Text Generator Comparison Between English and Korean Using LSTM Blocks in a Recurrent Neural Network)

  • 에런 스노버거;이충호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.269-271
    • /
    • 2022
  • 최근 몇 년 동안 LSTM 블록이 있는 RNN 네트워크는 순차적 데이터를 처리하는 기계 학습 작업에 광범위하게 사용되어왔다. 이러한 네트워크는 주어진 시퀀스에서 가능성이 다음으로 가장 높은 단어를 기존 신경망보다 더 정확하게 예측할 수 있기 때문에 순차적 언어 처리 작업에서 특히 우수한 것으로 입증되었다. 이 연구는 영어와 한국어로 된 150개의 성경 시편에 대한 세 가지 다른 번역에 대해 RNN/LSTM 신경망을 훈련하였다. 그런 다음 결과 모델에 입력 단어와 길이 번호를 제공하여 훈련 중에 인식한 패턴을 기반으로 원하는 길이의 새 시편을 자동으로 생성하였다. 영어 텍스트와 한국어 텍스트에 대한 네트워크 훈련 결과를 상호 비교하고 개선할 점을 기술한다.

  • PDF

심층신경망을 이용한 PCB 부품의 인쇄문자 인식 (Recognition of Characters Printed on PCB Components Using Deep Neural Networks)

  • 조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.6-10
    • /
    • 2021
  • Recognition of characters printed or marked on the PCB components from images captured using cameras is an important task in PCB components inspection systems. Previous optical character recognition (OCR) of PCB components typically consists of two stages: character segmentation and classification of each segmented character. However, character segmentation often fails due to corrupted characters, low image contrast, etc. Thus, OCR without character segmentation is desirable and increasingly used via deep neural networks. Typical implementation based on deep neural nets without character segmentation includes convolutional neural network followed by recurrent neural network (RNN). However, one disadvantage of this approach is slow execution due to RNN layers. LPRNet is a segmentation-free character recognition network with excellent accuracy proved in license plate recognition. LPRNet uses a wide convolution instead of RNN, thus enabling fast inference. In this paper, LPRNet was adapted for recognizing characters printed on PCB components with fast execution and high accuracy. Initial training with synthetic images followed by fine-tuning on real text images yielded accurate recognition. This net can be further optimized on Intel CPU using OpenVINO tool kit. The optimized version of the network can be run in real-time faster than even GPU.

소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템 (Neural Network-based FMCW Radar System for Detecting a Drone)

  • 장명재;김순태
    • 대한임베디드공학회논문지
    • /
    • 제13권6호
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

3-D 텐서와 recurrent neural network기반 심층신경망을 활용한 수동소나 다중 채널 신호분리 기술 개발 (Sources separation of passive sonar array signal using recurrent neural network-based deep neural network with 3-D tensor)

  • 이상헌;정동규;유재석
    • 한국음향학회지
    • /
    • 제42권4호
    • /
    • pp.357-363
    • /
    • 2023
  • 다양한 신호가 혼합된 수중 신호로부터 각각의 신호를 분리하는 기술은 오랫동안 연구되어왔지만, 낮은 품질의 수중 신호의 특성 상 쉽게 해결되지 않는 문제이다. 현재 주로 사용되는 방법은 Short-time Fourier transform을 사용하여 수신된 음향신호의 스펙트로그램을 얻은 뒤, 주파수의 특성을 분석하여 신호를 분리하는 기술이다. 하지만 매개변수의 최적화가 까다롭고, 스펙트로그램으로 변환하는 과정에서 위상 정보들이 손실되는 한계점이 지적되었다. 본 연구에서는 이러한 문제를 해결하기 위해 긴 시계열 신호 처리에서 좋은 성능을 보인 Dual-path Recurrent Neural Network을 기반으로, 다중 채널 센서로부터 생성된 입력신호인 3차원 텐서를 처리할 수 있도록 변형된 Tripple-path Recurrent Neural Network을 제안한다. 제안하는 기술은 먼저 다중 채널 입력 신호를 짧은 조각으로 분할하고 조각 내 신호 간, 구성된 조각간, 그리고 채널 신호 간의 각각의 관계를 고려한 3차원 텐서를 생성하여 로컬 및 글로벌 특성을 학습한다. 제안된 기법은, 기존 방법에 비해 개선된 Root Mean Square Error 값과 Scale Invariant Signal to Noise Ratio을 가짐을 확인하였다.

벌크 트레일러의 순간 및 누적 분말 배출량 추정을 위한 신경망 모델 성능 비교 (Performance Comparison of Neural Network Models for the Estimation of Instantaneous and Accumulated Powder Exhausts of a Bulk Trailer)

  • 이창준;이정근
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.174-179
    • /
    • 2023
  • Bulk trailers, used for the transportation of powdered materials, such as cement and fly ash, are crucial in the construction industry. The speedy exhaustion of powdered materials stored in the tank of bulk trailers is relevant to improving transportation efficiency and reducing transportation costs. The exhaust time can be reduced by developing an automatic control system to replace the manual exhaust operation. The instantaneous or accumulated exhausts of powdered materials must be measured for automatic control of the bulk trailer exhaust system. Accordingly, we previously proposed a recurrent neural network (RNN) model that estimated the instantaneous exhaust based on low-cost pressure sensor signals without an expensive flowmeter for powders. Although our previous study utilized only an RNN model, models such as multilayer perceptron (MLP) and convolutional neural network (CNN) are also widely utilized for time-series estimation. This study compares the performance of three neural network models (MLP, CNN, and RNN) in estimating instantaneous and accumulated exhausts. In terms of the instantaneous exhaust estimation, the difference in the performance of neural network models was insignificant (that is, 8.64, 8.62, and 8.56% for the MLP, CNN, and RNN, respectively, in terms of the normalized root mean squared error). However, in the case of the accumulated exhaust, the performance was excellent in the order of CNN (1.67%), MLP (2.03%), and RNN (2.20%).

변분법을 이용한 재귀신경망의 온라인 학습 (A on-line learning algorithm for recurrent neural networks using variational method)

  • 오원근;서병설
    • 제어로봇시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

반복 구매제품의 재구매시기 예측을 위한 다층퍼셉트론(MLP) 모형과 순환신경망(RNN) 모형의 성능비교 (Comparison of Performance between MLP and RNN Model to Predict Purchase Timing for Repurchase Product)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.111-128
    • /
    • 2017
  • Existing studies for recommender have focused on recommending an appropriate item based on the customer preference. However, it has not yet been studied actively to recommend purchase timing for the repurchase product despite of its importance. This study aims to propose MLP and RNN models based on the only simple purchase history data to predict the timing of customer repurchase and compare performances in the perspective of prediction accuracy and quality. As an experiment result, RNN model showed outstanding performance compared to MLP model. The proposed model can be used to develop CRM system which can offer SMS or app based promotion to the customer at the right time. This model also can be used to increase sales for repurchase product business by balancing the level of order as well as inducing repurchase of customer.

순환신경망을 이용한 자기장 기반 실내측위시스템 (Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model)

  • 배한준;최린;박병준
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.57-65
    • /
    • 2018
  • BLE 또는 Wi-Fi 기반 지문인식과 같은 기존의 RF 신호 기반 실내 위치인식 기술은 RF 신호의 불안정한 수신 신호 세기로 인해 소규모 실내 환경에서도 작지 않은 오차를 발생시키며 공항, 백화점과 같은 대규모 실내 환경에 적용하기가 어렵다. 이 논문에서는 RF 신호보다 안정적인 신호 강도를 갖는 자기장 신호를 이용한 실내측위 시스템을 제안한다. 유사한 자기장 값이 같은 실내 공간에 여럿 존재하지만, 사용자의 이동이 계속됨에 따라 자기장 신호는 고유 시퀀스를 가지게 된다. 본 논문에서는 시간에 따라 변화하는 센서 데이터 시퀀스를 인식하는 데 효과적인 순환 신경망 (Recurrent neural network, RNN)이라 불리는 심층 신경망 모델을 사용하여 사용자의 현재 위치와 이동 경로를 추적한다. 제안된 신경망 기반의 지자기 실내측위시스템의 평가를 위해 약 $94m{\times}26$ 크기의 교내 테스트베드에서 자기장 맵을 구축하고 자기장맵으로부터 추출한 다양한 이동 경로와 위치 정보를 이용하여 RNN을 학습한 결과, 테스트베드에서 제안된 시스템은 평균 1.20 미터의 테스트 측위 오차를 달성할 수 있었다.

순환인공신경망(RNN)을 이용한 대도시 도심부 교통혼잡 예측 (Traffic Congestion Estimation by Adopting Recurrent Neural Network)

  • 정희진;윤진수;배상훈
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.67-78
    • /
    • 2017
  • 교통혼잡비용은 매해 증가하며, 교통혼잡비용의 63.8%에 해당되는 도심부 교통혼잡에 대한 대책 마련이 시급한 상태이다. 최근 빅데이터, 인공지능 등 4차 산업혁명을 선도하는 기술들의 발전으로 교통부문의 정보화에도 많은 변화가 초래되고 있다. 이러한 신개념 기술을 활용하여 소통상황 예측정보를 제공함으로써 교통혼잡비용을 저감할 수 있을 것으로 기대된다. 이에 본 연구에서는 순환 인공 신경망(RNN)을 활용하여 반복 및 비반복 정체 예측 모형을 개발하고자 하였다. 제안 모형은 실시간 소통정보, 이력정보, 유고상황정보 등을 활용하여 현재를 기점으로 15분 간격의 1시간 이후 소통 상황을 예측하는 모형이다. 33개 링크로 구성된 서울시 논현로에 대해 2개의 은닉층으로 구성된 RNN 모형을 구축하였다. 총 30개 모형을 계량활용변화역전파 알고리즘으로 학습하여, 이 중 평균오차제곱이 0.0834인 모형을 최적 모형으로 선정하였다. 모형 검증 결과 25개 링크에 대해 유의성 높은 예측을 하였다. 모형의 예측력을 열지도를 통해 검토한 결과 반복 정체뿐 아니라 비반복 정체까지 예측할 수 있는 것을 확인할 수 있었다. 따라서 실제 도로 상에서의 교통혼잡 예측을 위한 모형으로 활용할 수 있을 것이라 기대된다.