• 제목/요약/키워드: (ML) Machine learning

검색결과 302건 처리시간 0.029초

비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가 (Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem)

  • 정광석;김동균;윤주덕;라긍환;김현우;주기재
    • 생태와환경
    • /
    • 제43권1호
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.

머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발 (Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning)

  • 임영우;엄지연;곽기영
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.307-325
    • /
    • 2023
  • 코로나19 팬데믹의 장기화로 인해 실내 생활에 지쳐가는 사람들이 우울감, 무기력증 등을 해소하기 위해 근거리의 산과 국립공원을 찾는 빈도가 폭발적으로 증가하였다. 자연으로 나온 수많은 사람들이 오가는 걸음을 멈추고 숨을 돌리며 쉬어가는 장소가 있는데 바로 약수터이다. 산이나 국립공원이 아니더라도 근린공원 또는 산책로에서도 간간이 찾아볼 수 있는 약수터는 수도권에만 약 6백여개가 위치해 있다. 하지만 불규칙적이고 수작업으로 수행되는 수질검사로 인해 사람들은 실시간으로 검사 결과를 알 수 없는 상태에서 약수를 음용하게 된다. 따라서 본 연구에서는 약수터 수질에 영향을 미치는 요인을 탐색하고 다양한 곳에 흩어져 있는 데이터를 수집하여 실시간으로 약수터 수질을 예측할 수 있는 모델을 개발하고자 한다. 데이터 수집의 한계로 인해 서울과 경기로 지역을 한정한 후 데이터 관리가 잘 이루어지고 있는 18개 시의 약 300여개 약수터를 대상으로 2015~2020년의 수질 검사 데이터를 확보하였다. 약수터 수질 적합 여부에 영향을 미칠 것으로 여겨지는 다양한 요인들 중 두 차례의 검토를 거쳐 총 10개의 요인을 최종 선별하였다. 최근 주목받고 있는 자동화 머신러닝 기술인 AutoML 기법을 활용하여 20여가지의 머신러닝 기법들 중 예측 성능 기준 상위 5개의 모델을 도출하였으며 그 중 catboost 모델이 75.26%의 예측 분류 정확도로 가장 높은 성능을 가지고 있음을 확인하였다. 추가로 SHAP 기법을 통해 분석에 사용한 변인들이 예측에 미치는 절대적인 영향력을 살펴본 결과 직전 수질 검사에서 부적합 판정을 받았는지 여부가 가장 중요한 요인이었으며 그 외 평균 기온, 과거 연속 2번 수질 부적합 판정 기록 유무, 수질 검사 당일 기온, 약수터 고도 등이 수질 부적합 여부에 영향을 미치고 있음을 확인하였다.

멀웨어 검출을 위한 기계학습 알고리즘과 특징 추출에 대한 성능연구 (A Study on Performance of ML Algorithms and Feature Extraction to detect Malware)

  • 안태현;박재균;권영만
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.211-216
    • /
    • 2018
  • 이 논문에서는 알려지지 않은 PE 파일이 멀웨어의 여부를 분류하는 방법을 연구하였다. 멀웨어 탐지 영역의 분류 문제에서는 특징 추출과 분류가 중요하다. 위와 같은 목적으로 멀웨어 탐지를 위해 우리는 어떠한 특징들이 분류기에 적합한지, 어떠한 분류기가 선택된 특징들에 대해 연구하였다. 그래서 우리는 멀웨어 탐지를 위한 기능과 분류기의 좋은 조합을 찾기 위해 실험하였다. 이를 위해 두 단계로 실험을 실시하였다. 1 단계에서는 Opcode, Windows API, Opcode + Windows API의 특징들을 이용하여 정확도를 비교하였다. 여기에서 Opcode + Windows API 특징이 다른 특징보다 더 좋은 결과를 나타내었다. 2 단계에서는 나이브 베이즈, K-NN, SVM, DT의 분류기들의 AUC 값을 비교하였다. 그 결과 DT의 분류기가 더 좋은 결과 값을 나타내었다.

AutoML을 이용한 산사태 예측 및 변수 중요도 산정 (Prediction of Landslides and Determination of Its Variable Importance Using AutoML)

  • 남경훈;김만일;권오일;왕파우;정교철
    • 지질공학
    • /
    • 제30권3호
    • /
    • pp.315-325
    • /
    • 2020
  • 이 연구는 도로 비탈면에서 발생하는 산사태의 확률론적 예측에 기반된 산사태 발생에 영향을 미치는 인자의 중요도 산정 및 예측 모델을 개발하는 것이다. 산사태 예측 모델을 개발하기 위해 한반도 전 지역을 대상으로 2007년부터 2020년까지 조사된 30,615사면의 현장조사 자료를 활용하였다. 전체 131개의 변수 인자 중 지형인자 17개, 지질인자 114개(기반암 89개를 포함), 도로와의 이격거리를 사용하였다. 산사태 발생에 영향을 미치는 인자를 자동화된 머신러닝인 AutoML을 실시하여 예측 성능이 뛰어난 XRT(extremely randomized trees)를 선정하였다. 변수 중요도 분석결과 지형적 요인 10개, 지질인자 9개, 사회적 영향성인 도로와의 이격 거리와 관련된 항목순으로 급경사지 불안정에 가장 많은 영향을 주는 것으로 분석되었다. 개발된 모델의 신뢰성 검증을 수행한 결과 AUC 83.977%의 예측율을 확보한 것으로 나타났다. 이 모델은 산사태 이력을 기반으로 한 현장조사 자료만을 이용하여 변수 중요도의 순위를 도출함으로써 그에 따른 산사태 발생 가능성을 확률적 및 정량적으로 평가하였다. 향후 의사 결정자들에게 현장조사를 통한 사면진단 안전평가 시 신뢰성 있는 근거를 제공하리라 판단된다.

Support vector regression을 응용한 barbaralane의 global potential energy surface 재구성

  • 류성옥;최성환;김우연
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.1-13
    • /
    • 2014
  • Potential Energy Surface(PES)를 양자 계산을 통해 알아내는 것은 화학 반응을 이해하는 데에 큰 도움이 된다. 이를테면 Transition State(TS)의 configuration을 알 수 있고, 따라서 reaction path와 활성화 에너지 값을 예측하여, 진행시키고자 하는 화학반응의 이해를 도울 수 있다. 하지만 PES를 그리기 위해서는 해당 분자의 다양한 configuration에 대한 singlet point energy 계산이 필요하기 때문에, 계산적인 측면에서 많은 비용을 요구한다. 따라서 product와 reactant의 구조와 같은 critical point의 정보를 이용하여 최소한의 configuration을 sampling하여 전체 PES를 재구성하는 기계학습 알고리즘을 개발하여 다차원 PES 상에서의 화학반응의 예측을 가능하게 하고자 한다. 본 연구에서는 Barbaralane의 두 안정화 된 구조의 critical point로 하여 이 주변을 random normal distribution하여, B3LYP/6-31G(d) level의 DFT 계산을 통해 relaxed scanning하여 구조와 에너지를 구하였으며, 이 정보를 Support Vector Regression(SVR) 알고리즘을 적용하여 PES를 재구현하였으며, 반응경로와 TS의 구조 그리고 활성화 에너지를 구하였다. 또한 본 기계학습 알고리즘을 바닥상태에서 일어나는 반응이 아닌, 들뜬 상태와 전자 구조가 변하는 화학반응, avoid crossing, conical intersection과 같은 Non-adiabatic frame에서 일어나는 현상에 적용 가능성을 논하고자 한다.

  • PDF

Design and implementation of an improved MA-APUF with higher uniqueness and security

  • Li, Bing;Chen, Shuai;Dan, Fukui
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.205-216
    • /
    • 2020
  • An arbiter physical unclonable function (APUF) has exponential challenge-response pairs and is easy to implement on field-programmable gate arrays (FPGAs). However, modeling attacks based on machine learning have become a serious threat to APUFs. Although the modeling-attack resistance of an MA-APUF has been improved considerably by architecture modifications, the response generation method of an MA-APUF results in low uniqueness. In this study, we demonstrate three design problems regarding the low uniqueness that APUF-based strong PUFs may exhibit, and we present several foundational principles to improve the uniqueness of APUF-based strong PUFs. In particular, an improved MA-APUF design is implemented in an FPGA and evaluated using a well-established experimental setup. Two types of evaluation metrics are used for evaluation and comparison. Furthermore, evolution strategies, logistic regression, and K-junta functions are used to evaluate the security of our design. The experiment results reveal that the uniqueness of our improved MA-APUF is 81.29% (compared with that of the MA-APUF, 13.12%), and the prediction rate is approximately 56% (compared with that of the MA-APUF (60%-80%).

정교한 데이터 분류를 위한 방법론의 고찰 (A Review of the Methodology for Sophisticated Data Classification)

  • 김승재;김성환
    • 통합자연과학논문집
    • /
    • 제14권1호
    • /
    • pp.27-34
    • /
    • 2021
  • 전 세계적으로 인공지능(AI)을 구현하려는 움직임이 많아지고 있다. AI구현에서는 많은 양의 데이터, 목적에 맞는 데이터의 분류 등 데이터의 중요성을 뺄 수 없다. 이러한 데이터를 생성하고 가공하는 기술에는 사물인터넷(IOT)과 빅데이터(Big-data) 분석이 있으며 4차 산업을 이끌어 가는 원동력이라 할 수 있다. 또한 이러한 기술은 국가와 개인 차원에서 많이 활용되고 있으며, 특히나 특정분야에 집결되는 데이터를 기준으로 빅데이터 분석에 활용함으로써 새로운 모델을 발견하고, 그 모델로 새로운 값을 추론하고 예측함으로써 미래비전을 제시하려는 시도가 많아지고 있는 추세이다. 데이터 분석을 통한 결론은 데이터가 가지고 있는 정보의 정확성에 따라 많은 변화를 가져올 수 있으며, 그 변화에 따라 잘못된 결과를 발생시킬 수도 있다. 이렇듯 데이터의 분석은 데이터가 가지는 정보 또는 분석 목적에 맞는 데이터 분류가 매우 중요하다는 것을 알 수 있다. 또한 빅데이터 분석결과 통계량의 신뢰성과 정교함을 얻기 위해서는 각 변수의 의미와 변수들 간의 상관관계, 다중공선성 등을 고려하여 분석해야 한다. 즉, 빅데이터 분석에 앞서 분석목적에 맞도록 데이터의 분류가 잘 이루어지도록 해야 한다. 이에 본 고찰에서는 AI기술을 구현하는 머신러닝(machine learning, ML) 기법에 속하는 분류분석(classification analysis, CA) 중 의사결정트리(decision tree, DT)기법, 랜덤포레스트(random forest, RF)기법, 선형분류분석(linear discriminant analysis, LDA), 이차선형분류분석(quadratic discriminant analysis, QDA)을 이용하여 데이터를 분류한 후 데이터의 분류정도를 평가함으로써 데이터의 분류 분석률 향상을 위한 방안을 모색하려 한다.