• 제목/요약/키워드: (La$_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$

검색결과 8건 처리시간 0.022초

고체산화물 연료전지 $(La_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$계 전해질의 제조 및 특성평가 (Properties of the $(La_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$ Based Electrolyte for Solid Oxide Fuel Cell)

  • 박상선;이미재;윤기현;최병현
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2002년도 연료전지심포지움 2002논문집
    • /
    • pp.271-276
    • /
    • 2002
  • 고체산화물 연료전지의 구성요소인 전해질의 $(La_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$계의 결정상 및 미세구조특성을 연구하였다. Mg의 첨가량이 증가할수록 Sr의 고용량도 증가하였으며 Sr의 함량이 많으면 2차상인 $LaSrGa_3O_7$상이 생성되었으며 Mg의 첨가량이 증가함에 따라서는 $LaSrGaO_4$상이 생성되었다. $LaSrGaO_4$상이 생성된 경우에는 낮은 전도도를 나타내었으며 $LaSrGa_3O_7$상의 경우에는 전기전도도에 큰 영향을 미치지 않았다. 또한 Sr과 Mg 첨가량의 증가는 grain 성장을 억제하였으며 $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$$1000^{\circ}C$에서 0.1S/cm 정도의 전기전도도를 나타내었다.

  • PDF

Sr과 Mg 첨가량 및 소결조건에 따른 LSGM계 전해질의 특성 변화 (Variations in the Properties of LSGM System Electrolyte with Sr and Mg Addition and Sintering Conditions)

  • 이미재;박상선;최병현
    • 한국세라믹학회지
    • /
    • 제39권4호
    • /
    • pp.352-358
    • /
    • 2002
  • 고체산화물 연료전지의 전해질로서 $LaGaO_3$계를 선정하여 La 대신 Sr을, Ga 대신에 Mg를 치환하여 첨가할 때 첨가량 및 소결 조건에 따라 전해질을 제조하고, 그 특성을 조사하였다. Sr과 Mg가 0.15와 0.20 mole 첨가되었을 때 Sr과 Mg가 La와Ga 자리에 동시 고용되어 (La$_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$ 단일상이 나타났고, 일부 조성에서는 $LaSrGa_3O_7$ 상과 $LaSrGaO_4$ 상이 2차상으로 나타났다. $LaSrGa_3O_7$ 상은 Sr과 Mg 첨가에 의한 상이며, $LaSrGaO_4$ 상은 액상형성에 의한 것으로 나타났으며, 또한 $LaSrGaO_4$ 상은 소결온도와 Mg 첨가량이 감소함에 따라 얻어졌다. $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ 상의 경우 소결온도를 증가함에 따라 열팽창계수는 감소하였으며, $1500^{circ}C$에서 1시간 소결한 소결체의 전기전도도는 $800^{circ}C$, 1mA에서 0.14S/cm를 나타내었다.

LSGM 전해질과 LSM 양극의 합성분말을 이용한 SOFC 단위전지의 특성 (Cell Properties for SOFC Using Synthesized Powder of Electrolyte LSGM System and Cathode LSM System)

  • 이미재;남중희;최병현
    • 한국세라믹학회지
    • /
    • 제39권4호
    • /
    • pp.359-366
    • /
    • 2002
  • 고체산화물 연료전지의 운전온도를 낮추기 위해 구성재 중 LSGM 전해질과 LSM 양극을 합성하고, 그 특성을 조사한 후 최적 조성과 공정으로 단위전지를 제작하고 출력을 측정하였다. 전해질 조성인 $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}와 (La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$$1500^{\circ}$에서 6시간 소결한 경우 두 조성 모두 $LaGaO_3$의 단일상을 형성하였고, $10∼3{\mu}m$의 결정 크기를 갖는 치밀한 미세구조를 얻었으며, 저기전도도는 $800^{\circ}$에서 0.13S/cm를 나타내었다. 양극의 경우 GNP법으로 $(La1-xSrx)MnO_3$를 합성한 경우 Sr의 양이 0.2mole일 때까지는 $LaMnO_3$ perovskite 단일상이 생성되었으며, 입자의 크기는 약 40nm였다. 단위전지는 $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ 조성으로 소결한 전해질 양면에 $(La_{0.9}Sr_{0.1})MnO_3$ 양극과 음극의 입자크기는 $1{\mu}m$ 정도였고 다공성을 나타내었다. 이때 단위전지의 출력은 $800^{\circ}$에서 약 $0.3W/cm^2$를 나타내었다

Glycine nitrate process로 합성된 La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ 전해질의 제조 및 특성평가 (Preparation and characterization of La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ electrolyte using glycine-nitrate process)

  • 옥경민;김경록;김태완;김동현;박희대;성열문;박홍채;윤석영
    • 한국결정성장학회지
    • /
    • 제23권1호
    • /
    • pp.37-43
    • /
    • 2013
  • 이차상의 편석, 분말의 조성 및 합성방법은 $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$(LSGMC) 물질의 전도도에 영향을 미친다. 조성이 균일하고 순도가 높은 분말을 얻기 위해 GNP(Glycine nitrate process)를 이용하여 고체산화물 연료전지의 전해질재료인 $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$를 합성하였다. 자발연소반응 시, 글리신의 양에 따른 물질의 특성을 확인하기 위하여, 글리신/양이온 비를 0.5, 1, 1.5, 2, 2.5로 변화시켜 분말을 합성하였다. 합성된 분말의 단상의 perovskite상 동정 및 소결체의 미세구조 변화를 XRD와 SEM을 이용하여 분석하였다. 조성비가 1.5인 경우, 상대적으로 치밀하며, $800^{\circ}C$에서 0.131 $Scm^{-1}$의 우수한 전기전도특성을 나타냈다. 또한, $25{\sim}800^{\circ}C$ 사이의 온도에서 열팽창거동이 선형을 나타내었다.

The developments of heavy hydrocarbon reformer for SOFC

  • 배중면
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF