• 제목/요약/키워드: (LSTM) Long short-term memory

검색결과 523건 처리시간 0.024초

기상 데이터를 활용한 LSTM 기반의 해양 혼합층 수온 예측 (LSTM Based Prediction of Ocean Mixed Layer Temperature Using Meteorological Data)

  • 고관섭;김영원;변성현;이수진
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.603-614
    • /
    • 2021
  • 최근 우리나라 주변 해역의 해수면 온도가 상승하고 있다. 이러한 수온 상승은 어족자원의 변화를 일으켜 낚시와 같은 레저활동에 영향을 미치기도 하며, 특히 고수온은 적조 발생으로 이어져 양식업과 같은 해양산업에 극심한 피해를 유발하기도 한다. 한편 수온 변화는 잠수함을 탐지하는 군사작전과도 밀접하게 연관되어 있다. 이는 잠수함을 탐지하기 위한 음파가 수온층에 따라 회절, 굴절 및 반사되는 정도가 달라지기 때문이다. 이와 같이 해양과 관련된 다양한 분야에서 중요성을 가지는 해양 수온의 변화를 예측하기 위한 연구가 현재 활발하게 진행되고 있다. 그러나 기존 연구들은 대부분 해수면 온도만을 예측하는데 중점을 두고 있어 수심별 어족자원의 변화나 잠수함 탐지와 같은 군사분야 활용이 제한된다. 이에 본 연구에서는 수심별 수온자료 및 해수면 온도와 상관관계를 가지는 기온, 기압, 일조량 등의 기상 데이터를 함께 활용하여 수심 38 m 혼합층의 수온을 예측하였다. 사용된 데이터는 이어도 해양과학기지에서 관측한 2016년부터 2020년까지의 기상 데이터와 수심별 수온 자료이며, 예측의 정확성과 효율성을 높이기 위해 딥러닝 기법 중 시계열 자료에 적합하다고 알려진 LSTM(Long Short-Term Memory)을 사용하였다. 실험 결과 1시간 예측을 기준으로 기온과 기압, 일조량 자료를 함께 활용한 모델의 RMSE(Root Mean Square Error)는 0.473으로 나타났다. 반면 해수면 수온만을 활용한 모델의 RMSE는 0.631로 나타나 기상데이터를 함께 활용한 모델이 상부 혼합층 수온 예측에서 보다 우수한 성능을 보임을 확인하였다.

Maximizing Information Transmission for Energy Harvesting Sensor Networks by an Uneven Clustering Protocol and Energy Management

  • Ge, Yujia;Nan, Yurong;Chen, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1419-1436
    • /
    • 2020
  • For an energy harvesting sensor network, when the network lifetime is not the only primary goal, maximizing the network performance under environmental energy harvesting becomes a more critical issue. However, clustering protocols that aim at providing maximum information throughput have not been thoroughly explored in Energy Harvesting Wireless Sensor Networks (EH-WSNs). In this paper, clustering protocols are studied for maximizing the data transmission in the whole network. Based on a long short-term memory (LSTM) energy predictor and node energy consumption and supplement models, an uneven clustering protocol is proposed where the cluster head selection and cluster size control are thoroughly designed for this purpose. Simulations and results verify that the proposed scheme can outperform some classic schemes by having more data packets received by the cluster heads (CHs) and the base station (BS) under these energy constraints. The outcomes of this paper also provide some insights for choosing clustering routing protocols in EH-WSNs, by exploiting the factors such as uneven clustering size, number of clusters, multiple CHs, multihop routing strategy, and energy supplementing period.

센서 측정기와 회로형 순환 유닛(GRU)을 이용한 실내 공기 품질 측정 및 추세 예측 시스템 (Indoor Air Condition Measurement and Regression Analysis System Through Sensor Measurement Device and Gated Recurrent Unit)

  • 안재현;신동일;김규호;양지훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권9호
    • /
    • pp.457-464
    • /
    • 2017
  • 실내 공기 품질 측정은 측정 대상 공간의 대기 상태 유지, 외부 변인으로 인한 대기 이상 현상을 검출하려는 방법이다. 실내 공기 품질을 주기적으로 기록하면서 변인에 따른 공기 변화에 특정 패턴이 발생함을 관측할 수 있었으나, 파라미터를 설정하고 계수를 찾아 나가기엔 파라미터의 개수나 그 영향력을 추산하기 어렵고 결과가 시간에 의존적이라는 문제가 있다. 따라서 본 실험은 이것을 공식화하는 대신, 측정 주기마다 추이를 예측하는 관측치 중심의 기계 학습 모델을 개발하는 것을 목표로 한다. 본 논문은 실내 대기 품질을 주기적으로 전송 및 저장하는 측정기의 기록 데이터로 공기 품질 변화를 예측하는 모델을 설명하고 시계열 분석 모델을 구축한다.

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

Precision Analysis of NARX-based Vehicle Positioning Algorithm in GNSS Disconnected Area

  • Lee, Yong;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제39권5호
    • /
    • pp.289-295
    • /
    • 2021
  • Recently, owing to the development of autonomous vehicles, research on precisely determining the position of a moving object has been actively conducted. Previous research mainly used the fusion of GNSS/IMU (Global Positioning System / Inertial Navigation System) and sensors attached to the vehicle through a Kalman filter. However, in recent years, new technologies have been used to determine the location of a moving object owing to the improvement in computing power and the advent of deep learning. Various techniques using RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and NARX (Nonlinear Auto-Regressive eXogenous model) exist for such learning-based positioning methods. The purpose of this study is to compare the precision of existing filter-based sensor fusion technology and the NARX-based method in case of GNSS signal blockages using simulation data. When the filter-based sensor integration technology was used, an average horizontal position error of 112.8 m occurred during 60 seconds of GNSS signal outages. The same experiment was performed 100 times using the NARX. Among them, an improvement in precision was confirmed in approximately 20% of the experimental results. The horizontal position accuracy was 22.65 m, which was confirmed to be better than that of the filter-based fusion technique.

Improved Convolutional Neural Network Based Cooperative Spectrum Sensing For Cognitive Radio

  • Uppala, Appala Raju;Narasimhulu C, Venkata;Prasad K, Satya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2128-2147
    • /
    • 2021
  • Cognitive radio systems are being implemented recently to tackle spectrum underutilization problems and aid efficient data traffic. Spectrum sensing is the crucial step in cognitive applications in which cognitive user detects the presence of primary user (PU) in a particular channel thereby switching to another channel for continuous transmission. In cognitive radio systems, the capacity to precisely identify the primary user's signal is essential to secondary user so as to use idle licensed spectrum. Based on the inherent capability, a new spectrum sensing technique is proposed in this paper to identify all types of primary user signals in a cognitive radio condition. Hence, a spectrum sensing algorithm using improved convolutional neural network and long short-term memory (CNN-LSTM) is presented. The principle used in our approach is simulated annealing that discovers reasonable number of neurons for each layer of a completely associated deep neural network to tackle the streamlining issue. The probability of detection is considered as the determining parameter to find the efficiency of the proposed algorithm. Experiments are carried under different signal to noise ratio to indicate better performance of the proposed algorithm. The PU signal will have an associated modulation format and hence identifying the presence of a modulation format itself establishes the presence of PU signal.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

Traffic Accident Detection Based on Ego Motion and Object Tracking

  • Kim, Da-Seul;Son, Hyeon-Cheol;Si, Jong-Wook;Kim, Sung-Young
    • 한국정보기술학회 영문논문지
    • /
    • 제10권1호
    • /
    • pp.15-23
    • /
    • 2020
  • In this paper, we propose a new method to detect traffic accidents in video from vehicle-mounted cameras (vehicle black box). We use the distance between vehicles to determine whether an accident has occurred. To calculate the position of each vehicle, we use object detection and tracking method. By the way, in a crowded road environment, it is so difficult to decide an accident has occurred because of parked vehicles at the edge of the road. It is not easy to discriminate against accidents from non-accidents because a moving vehicle and a stopped vehicle are mixed on a regular downtown road. In this paper, we try to increase the accuracy of the vehicle accident detection by using not only the motion of the surrounding vehicle but also ego-motion as the input of the Recurrent Neural Network (RNN). We improved the accuracy of accident detection compared to the previous method.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.