• Title/Summary/Keyword: (Antifouling paint)

Search Result 21, Processing Time 0.026 seconds

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Tributyltin Induce Apoptosis by Induction of Nur 77 Expression and Translocation in to the Cytosol in Leydig Cells

  • Park, Chul-Yung;Lee, Kyung-Jin;Kim, Ji-Young;Oh, Duk-Hee;Shin, Dong-Weon;Jung, Kyung-Sik;Jeong, Hye-Gwang
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.138-138
    • /
    • 2003
  • Tributyltin (TBT) is also recognized as an endocrine disrupter. Organotin compounds such as TBT are widely used as agricultural biocides, and for antifouling paint of ship bottoms and of fishing nets. In this study, we investigated the role of nur 77 in induction of apoptosis in TBT-induced leydig cells.(omitted)

  • PDF

A study for Domestic Respond to the ′AFS′ Convention of IMO (IMO-AFS 협약 채택에 따른 국내 대처방안 연구)

  • Seol, Dong-Il;Kim, In-Soo;Lee, Guk-Jin;Park, Sang-Jin;Park, Sang-Ho;Kim, Dong-Geun
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.505-510
    • /
    • 2002
  • Bans on TBT based antifouling paints have been drafted since 1998 by meetings 42, 43, 45 and 46 for the MEPC (Marine Environmental Protection Committee) of the International Marine Organization, and decided finally at a Diplomatic Conference of IMO in October 2001. It was a key issue that there should be a global prohibition on the application of organo-tin compounds as biocides in Anti-fouling systems by Jan. 2003, and a complete prohibition on the presence of organo-tin compounds on ships by 1 Jan. 2008. This paper suggests a method to design International Anti-fouling system cretificate, Record of anti-fouling system, Endorsement of the Records, Declaration on Anti-fouling System, Port State Control and reform(legislative) associated a law.

Responses of MFO System in Surf Clam, Pseudocardium sachalinensis, Injected with Sea-Nine 211 Antifoulant (Tin-free 방오제인 Sea-Nine 211에 노출된 북방대합에서 MFO 효소계의 반응)

  • Lee, Ji-Seon;Jeon, Yeong-Ha;Shim, Won-Joon;Jeon, Joong-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • Many alternative biocidal additives were applied to antifouling paint to replace TBT, and Sea-Nine 211 is one of alternating organic booster compounds used in antifouling paint. In this study, extent of Sea-Nine 211 toxicity on marine benthic bivalve is evaluated. Sea-Nine 211 was injected to surf clam, Pseudocardium sachalinensis, that inhabitate northern part of Gangwon Province, Korea. Survival rate of the clam and xenobiotics metabolizing enzyme activities in digestive gland were measured during 4 day-exposure period. The results were compared with those of TBT exposed clam. There were no mortality of clam in the solvent (DMSO) control group and the three Sea-Nine 211 exposure groups (5, 25, 50 mg kg$^{-1}$ body weight), while the clam exposed to 1, 2 and 5 mg kg$^{-1}$ TBT chloride (TBTC) demonstrated 70, 30 and 0% survival rate, respectively. The Sea-Nine 211 exposure group showed a tendency of cytochrome P450 (CYP) induction according to the exposure duration, on the other hand, CYP content was decreased in the TBT exposure group. NADPH cytochrome P450 reductase activity slightly increase according to the exposure duration in the Sea-Nine 211 exposure group, while TBTC inhibit its activity as CYP content. Moreover, there was no significant change of NADH cytochrome b5 reductate activity in the clam epxosed to Sea-Nine 211. In the TBTC exposure group, its activity increased in early exposure period and then significantly decreased the rest of exposure period. All the results indicate that Sea-Nine 211 demonstrated a tendency to induce CYP level, while TBTC inhibits the CYP level, NADPH cytochrome P450 reductase and NADH cytochrome b5 reductase activities.

Study on the Drag Performance of the Flat Plates Treated by Antifouling Paints (방오 도료가 도장된 평판에 대한 항력 성능 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Cho, Seong-Rak;Ahn, Jong-Woo;Cho, Sang-Rae;Kim, Kyung-Rae;Chung, Young-Uok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • In the present study, the flat plate model test method is developed to evaluate the skin friction of the marine coating in the cavitation tunnel. Six-component force balance is used to measure the profile drag of the flat plate and strut. LDV(laser Doppler velocimetry) technique is also employed to evaluate the drag and to figure out the reason of the drag reduction. The flow velocities above the surface can be used to assess the skin friction, combined with direct force measurement. Since the vortical structure in the coherent turbulence structure influences on the skin friction in the high Reynolds number regime, the interaction between the turbulence structure and the surface wall is paying more attention. This sort of thing is important in the passive control of the turbulent boundary layer because the skin friction can't be determined only by wall condition. As complicated flow phenomena exist around a paint film, systematic measurement and analysis are necessary to evaluate the skin friction appropriately.

Toxic Evaluation of Antifouling Paint (Irgarol and Diuron) using the Population Growth Rate of Marine Diatom, Skeletonema costatum (해산 규조류(Skeletonema costatum)의 개체군 성장률 분석을 이용한 신방오도료(Irgarol, Diuron)의 독성평가)

  • Lee, Ju-Wook;Choi, Hoon;Park, Yun-Ho;Lee, Seung-Min;Choi, Yoon-Seok;Heo, Seung;Hwang, Un-Ki
    • Journal of Marine Life Science
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • We evaluated the toxic effects of antifouling paint (irgarol and diuron) on the population growth rate (r) of the marine diatom, Skeletonema costatum. The r of S. costatum was determined after 96 hrs of exposure to irgarol (0, 0.31, 0.63, 1.25, 2.5 and 5 ㎍ l-1) and diuron (0, 7.81, 15.63, 31.25, 62.5 and 125 ㎍ l-1). It was observed that r in the control (absence of irgarol and diuron) were greater than 0.04, while r in the treatment groups decreased with increasing irgarol and diuron concentrations. Irgarol and diuron reduced r in a dose-dependent manner with significant decreases occurring at concentrations above 0.63 and 15.63 ㎍ l-1, respectively. The EC50 values of r in irgarol and diuron exposure were 1.09 and 45.45 ㎍ l-1. No observed effect concentration (NOEC) were 0.31 and 7.81 ㎍ l-1, the lowest observed effect concentration (LOEC) were 0.63 and 15.63 ㎍ l-1. This result indicate that a concentration of greater than 0.63 ㎍ l-1 of irgarol and 15.63 ㎍ l-1 of diuron in marine ecosystems induced to decreasing r of S. costatum. Also, these toxic values can be useful as a baseline data for the toxic evaluation of irgarol and diuron in marine ecosystems.

A Health Risk Assessment of Tributyltin Compounds in Fishes and Shellfishes in Korea. (국내 유통중인 어패류 섭취에 따른 유기주석화합물의 인체 위해성 평가)

  • Choi, Shi-Nai;Choi, Hye-Kyung;Song, Hoon;Oh, Chang-Hwan;Park, Jong-Sei
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.3
    • /
    • pp.137-145
    • /
    • 2002
  • Tributyltin compounds have been increasingly used in the form of plastic stabilizers, catalytic agents, industrial agricultural biocides, antifouling paint, and pesticides. Among these organotin compounds, large amounts of tributyltin(TBT) and triphenyltin(TPT) have been used as antifouling agents because they have a superior ability to prevent marine organism from being encrusted on ship bottoms and in culturing nets. Environmental pollution by these organotin compounds in the aquatic environment were undertaken. The international maritime Organization's established a provisional tolerable daily intake(TDI) of 1.6[micro]g TBTO/kg/ B.W. The Food and Agiculture Organization (of the United Nations)/world Health Organization's (FAO/WHO) proposed a TDI of 0.5ug TPT/kg BW/d. This study is conducted monitoring of TBT on seafoods in Korea and risk assessment for exposure on TBT in seafoods. Total hazard index(using Reference Dose : 0.3 ug TBTO/kg B.W/day) of intake exposure on seafoods is 0.04 as the 50th percentile, 0.08 as the 95th percentile. This value is estimated by Monte-Carlo simulation using Crystal Ball(Decisioneering Co., 2001).

Distribution and Effect on Organisms of Butyltin Compounds Inside Songsan Harbor of Cheju Island (제주도 성산항내 부틸주석화합물의 분포와 생물체에 미치는 영향)

  • 김상규;안이선;고병철;조은일;이기호
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • Butyltin compounds (BTs) in seawater, sediments and organisms (Thais clavigera, Liolophura japonica and Cellana nigrolineata), were quantitatively determined to evaluate their distribution inside Songsan Harbor of Cheju Island. In addition, imposex in T. clavigera was used to assess the effect on organisms of BTs. Analysis of the samples collected in seawater, sediments (March, June and August) and organisms (May, July and August) in 1998, confirmed the contamination of BTs in the aquatic environment inside Songsan Harbor. The main BTs species in seawater and sediments was monobutyltin (MBT), tributyltin (TBT), respectively, irrespective of survey time. In oranisms, TBT and dibutyltin (DBT) were detected in similar concentrations for T. clavigera and L. japonica, but for C nigrolineata, DBt concentration was the highest. TBT, the most toxic to aquatic organisms among BTs, was found at concentrations which were sufficient to have a serious effect on the sensitive organisms upon chronic exposure, The relatively high correlations (r>0.83) between BTs indicated that DBT and MBT were mainly degraded from TBT based on antifouling paint and their sources were negligible. The sedimentary organic matters did not have influence on the distribution of BTs in marine environment, and lipid content in T. clavigera did not show a correlation with TBT concentrations. The rate of occurrence of imposex in T. clavigera was 100%, and the relative penis length index (RPLI) and the relative penis size index (RPSI) which represent the degree of imposex were 79.7%, 58.1%, respectively. Measurement of imposex in T. clavigera was expected to be a very helpful tool for preliminary survey of BTs prior to trace analysis of BTs.

  • PDF

Effects of Anti-Fouling System(AFS) on embryos of a sea urchin, Mesocentrotus nudus (국내 주상용 Anti-Fouling System 처리 활성물질이 둥근성게(Mesocentrotus nudus)의 배아에 미치는 영향)

  • Seo, Jin-Young;Kang, Jung Hoon;Choi, Jin-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.389-395
    • /
    • 2019
  • In this study, we aimed to assess the toxicity of biocide present in antifouling paint on embryos of sea urchin, Mesocentrotus nudus. Three types of biocide (Sea-nine 211, Diuron, and Irgarol 1051) were selected for the exposure experiment. The EC50 of Sea-nine, Diuron, and Irgarol on the fertilization rate of sea urchin were 32.8 ㎍ L-1, 7,975 ㎍ L-1 and 6,995 ㎍ L-1, respectively. The EC50 of Sea-nine, Diuron, and Irgarol on the development rate of sea urchin were 31.6 ㎍ L-1, 3,044 ㎍ L-1, and 2,267 ㎍ L-1, respectively. The highest toxicity was observed in the presence of Sea-nine.