• 제목/요약/키워드: (3-mercaptopropyl) trimethoxysilane (MPTMS)

검색결과 8건 처리시간 0.023초

다양한 투명 기판의 3-MPTMS 처리에 의한 은 나노 박막의 광 특성 변화 연구 (Fabrication and Optical Properties of (3-mercaptopropyl) Trimethoxysilane (MPTMS)-assisted Silver Nanofilm on Various Substrates)

  • 최현성;오승준;길도연;구태원;박영미
    • 한국광학회지
    • /
    • 제34권6호
    • /
    • pp.283-288
    • /
    • 2023
  • 본 연구에서는 quartz, sapphire, slide glass와 같이 투명한 기판 위에 (3-mercaptopropyl) trimethoxysilane (MPTMS)를 처리하고 나노미터 두께로 은을 증착하여 형성된 은 나노 박막의 광학적, 전기적 특성을 탐구한다. 기판의 MPTMS 증착에 따라 각각 5, 7, 9, 13 nm 두께를 갖는 은 나노 박막의 표면 형태 변화를 전자현미경을 통해 확인하고, UV-visible 전자기파 영역의 투과 측정 실험을 통해 금속 나노 박막에서 나타나는 국소 표면 플라즈몬에 의한 흡수 효과가 줄어드는 것을 확인하였다. 이는 MPTMS에 의해 나노미터 두께의 금속 박막이 균일하게 형성된 것을 의미한다. 또한 MPTMS 증착 시간을 30분부터 77시간까지 조절함으로써 UV-visible 투과율과 전기전도도 변화를 측정하여 균일한 금속 나노 박막 형성을 위한 MPTMS의 증착 조건에 대해 탐구한다. 본 연구 결과는 투명 기판 위 균일한 금속 나노 박막 형성에 대한 연구 및 고성능 나노 박막 전극 개발 등과 같은 응용 분야에 도움이 될 것이다.

실란계 사슬 이동제를 사용한 아크릴 바인더의 제조 (Preparation of Acryl Binder with Silane Type Chain Transfer Agent)

  • 김진곤;신민재;신재섭
    • 폴리머
    • /
    • 제36권3호
    • /
    • pp.351-356
    • /
    • 2012
  • 디스플레이 전자 장치의 제작에 사용되는 대표적인 유기물첨가제는 아크릴 바인더이다. 이 아크릴 바인더는 라디칼 중합으로 제조되는데 본 연구에서는 glycidyl methacrylate(GMA), methyl methacrylate(MMA), methacrylic acid(MAA)를 이용하여 공중합을 시도하였다. 그리고 이 공중합체의 접착력 향상을 위해서 실란계 mercaptane 화합물을 사슬 이동제(CTA)로 사용하였다. 본 연구에서 사용된 CTA는 (3-mercaptopropyl) trimethoxysilane(MPTMS)이며, 제조된 공중합체들의 분자량, 코팅의 두께, 투과도, 접착력 등의 물성 등을 살펴보았다. 사용된 MPTMS 함량에 따라 분자량이 조절되었고, MPTMS의 함량이 증가할수록 접착력이 향상되었다.

MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors

  • Yang, Seongjin;Lim, Hyun Jee;Jeon, Hyungkook;Hong, Seong Kyung;Shin, Jung Hwal
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.247-251
    • /
    • 2016
  • Au/PDMS membranes are widely used to fabricate strain sensors which can detect input signals. An interfacial adhesion between metal films and polydimethylsiloxane (PDMS) substrates is one of the important factors determining the performance of strain sensors, in terms of robustness, reliability, and sensitivity. Here, we fabricate Au/PDMS membranes with (3-mercaptopropyl) trimethoxysilane (MPTMS) treatment. PDMS membranes were fabricated by spin-coating and the thickness was controlled by varying the spin rates. Au electrodes were deposited on the PDMS membrane by metal sputtering and the thickness was controlled by varying sputtering time. Owing to the MPTMS treatment, the interfacial adhesion between the Au electrode and the PDMS membrane was strengthened and the membrane was highly transparent. The Au electrode, fabricated with a sputtering time of 50 s, had the highest gauge factor at a maximum strain of ~0.7%, and the Au electrode fabricated with a sputtering time of 60 s had the maximum strain range among sputtering times of 50, 60, and 120 s. Our technique of using Au/PDMS with MPTMS treatment could be applied to the fabrication of strain sensors.

양 말단에 MPTMS-아크릴아미드로 치환된 폴리이미드의 합성 (Synthesis of Poly Imide/α'ω'-di Poly Acrylamide (3-Mercaptopropyl) Trimethoxysilane Terminated Copolymer)

  • 민준호;박찬영;민성기
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.478-485
    • /
    • 2016
  • An amide group was introduced to restrain the cohesion of silica nano-particles and copolymerized with polyamic acid. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2, 6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA) using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were studied using FT-IR and XRD analyses; an analysis of the surface characteristic groups was conducted via XPS. Changes in the thermal properties were examined through DSC and TGA; solubility for solvents was also studied.

황산기가 도입된 감마 알루미나를 이용한 자일로즈 탈수화 반응을 통한 푸르푸랄의 생성 (Dehydration of D-xylose into Furfural Using Sulfonic Acid Modified ${\gamma}-Al_2O_3$)

  • 김은규;김샛별;박은덕;김상욱
    • 청정기술
    • /
    • 제17권1호
    • /
    • pp.31-36
    • /
    • 2011
  • 산성, 중성, 염기성의 감마알루미나에 (3-mercaptopropyl) trimethoxysilane (3-MPTMS)를 알루미나 기공 내에 도입하고 30 wt% 과산화수소수를 이용하여 황산기가 결합된 감마알루미나를 합성하였다. 1 M HCl 용액을 이용하여 3-MPTMS의 도입을 좀 더 용이하게 하였다. 합성된 촉매는 자일로즈 탈수화 반응을 통한 푸르푸랄 생성반응에 적용하여 촉매 특성을 분석하였다. 모든 촉매 반응에서 우수한 자일로즈 전환률을 보였고, 황산가가 도입된 촉매가 푸르푸랄의 선택도를 높이는 결과를 보였다.

Synthesis of Copoly(amide-imide)s Based on Silica Nano Particles-polyacrylamide

  • Min, Jun Ho;Park, Chan Young;Min, Seong Kee
    • Elastomers and Composites
    • /
    • 제51권2호
    • /
    • pp.138-146
    • /
    • 2016
  • It is an inconvenience for silica nano-particles to dry again when using it in that they cohere each other through moisture in the air. Acrylamide groups were introduced to improve such inconvenience and copolymerized with silica nano-particles and then we copolymerized again with polyamic acid in order to increase thermal characteristic. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2,6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA), using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were researched by FT-IR and XRD analyses and the analysis of surface characteristic groups was conducted via XPS. A change in thermal properties was examined through DSC and TGA and solubility for solvents was also researched.

Characterizations of Modified Silica Nanoparticles(I)

  • Min, Seong-Kee;Park, Chan-Young;Lee, Won-Ki;Seul, Soo-Duk
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.275-279
    • /
    • 2012
  • (3-mercaptopropyl)trimethoxysilane (MPTMS) was used as a silylation agent, and modified silica nanoparticles were prepared by solution polymerization. 2.0 g of silica nanoparticles, 150 ml of toluene, and 20 ml of MPTMS were put into a 300 ml flask, and these mixtures were dispersed with ultrasonic vibration for 60 min. 0.2 g of hydroquinone as an inhibitor and 1 to 2 drops of 2,6-dimethylpyridine as a catalyst were added into the mixture. The mixture was then stirred with a magnetic stirrer for 8 hrs. at room temperature. After the reaction, the mixture was centrifuged for 1 hr. at 6000rpm. After precipitation, 150 ml of ethanol was added, and ultrasonic vibration was applied for 30 min. After the ultrasonic vibration, centrifugation was carried out again for 1 hr. at 6000rpm. Organo-modification of silica nanoparticles with a ${\gamma}$-methacryloxypropyl functional group was successfully achieved by solution polymerization in the ethanol solution. The characteristics of the ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) were examined using X-ray photoelectron spectroscopy (XPS, THERMO VG SCIENTIFIC, MultiLab 2000), a laser scattering system (LSS, TOPCON Co., GLS-1000), Fourier transform infrared spectroscopy (FTIR, JASCO INTERNATIONL CO., FT/IR-4200), scanning electron microscopy (SEM, HITACHI, S-2400), an elemental analysis (EA, Elementar, Vario macro/micro) and a thermogravimetric analysis (TGA, Perkin Elmer, TGA 7, Pyris 1). From the analysis results, the content of the methacryloxypropyl group was 0.98 mmol/g and the conversion rate of acrylamide monomer was 93%. SEM analysis results showed that the organo-modification of ultra-fine particles effectively prevented their agglomeration and improved their dispensability.

Characterizations of Modified Silica Nanoparticles(II) ; Preparation and Application of Silica Nanoparticles as a Environmentally Filler

  • Min, Seong-Kee;Bae, Deok-Kwun;Park, Sang-Bo;Yoo, Seong-Il;Lee, Won-Ki;Park, Chan-Young;Seul, Soo-Duk
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.433-438
    • /
    • 2012
  • A chemical process involves polymerization within microspheres, whereas a physical process involves the dispersion of polymer in a nonsolvent. Nano-sized monodisperse microspheres are usually prepared by chemical processes such as water-based emulsions, seed suspension polymerization, nonaqueous dispersion polymerization, and precipitation polymerizations. Polymerization was performed in a four-necked, separate-type flask equipped with a stirrer, a condenser, a nitrogen inlet, and a rubber stopper for adding the initiator with a syringe. Nitrogen was bubbled through the mixture of reagents for 1 hr. before elevating the temperature. Functional silane (3-mercaptopropyl)trimethoxysilane (MPTMS) was used for the modification of silica nanoparticles and the self-assembled monolayers obtained were characterized by X-ray photoelectron spectroscopy (XPS), laser scattering system (LSS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental analysis (EA), and thermogravimetric analysis (TGA). In addition, polymer microspheres were polymerized by radical polymerization of ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) and acrylamide monomer via precipitation polymerization; then, their characteristics were investigated. From the elemental analysis results, it can be concluded that the conversion rate of acrylamide monomer was 93% and that polyacrylamide grafted to MPSN nanospheres via the radical precipitation polymerization with AAm in ethanol solvent. The microspheres were successfully polymerized by the 'graft from' method.