• 제목/요약/키워드: (20s)-protopanaxadiol

검색결과 68건 처리시간 0.021초

The anti-tumor efficacy of 20(S)-protopanaxadiol, an active metabolite of ginseng, according to fasting on hepatocellular carcinoma

  • Li, Wenzhen;Wang, Yifan;Zhou, Xinbo;Pan, Xiaohong;Lu, Junhong;Sun, Hongliu;Xie, Zeping;Chen, Shayan;Gao, Xue
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.167-174
    • /
    • 2022
  • Background: 20(S)-protopanaxadiol (20(S)-PPD), one of the main active metabolites of ginseng, performs a broad spectrum of anti-tumor effects. Our aims are to search out new strategies to enhance anti-tumor effects of natural products, including 20(S)-PPD. In recent years, fasting has been shown to be multi-functional on tumor progression. Here, the effects of fasting combined with 20(S)-PPD on hepatocellular carcinoma growth, apoptosis, migration, invasion and cell cycle were explored. Methods: CCK-8 assay, trypan blue dye exclusion test, imagings photographed by HoloMonitorTM M4, transwell assay and flow cytometry assay were performed for functional analyses on cell proliferation, morphology, migration, invasion, apoptosis, necrosis and cell cycle. The expressions of genes on protein levels were tested by western blot. Tumor-bearing mice were used to evaluate the effects of intermittent fasting combined with 20(S)-PPD. Results: We firstly confirmed that fasting-mimicking increased the anti-proliferation effect of 20(S)-PPD in human HepG2 cells in vitro. In fasting-mimicking culturing medium, the apoptosis and necrosis induced by 20(S)-PPD increased and more cells were arrested at G0-G1 phase. Meanwhile, invasion and migration of cells were decreased by down-regulating the expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in fasting-mimicking medium. Furthermore, the in vivo study confirmed that intermittent fasting enhanced the tumor growth inhibition of 20(S)-PPD in H22 tumor-bearing mice without obvious side effects. Conclusion: Fasting significantly sensitized HCC cells to 20(S)-PPD in vivo and in vitro. These data indicated that dietary restriction can be one of the potential strategies of chinese medicine or its active metabolites against hepatocellular carcinoma.

20(S)-Protopanaxadiol Induces Human Breast Cancer MCF-7 Apoptosis through a Caspase-Mediated Pathway

  • Zhang, Hong;Xu, Hua-Li;Fu, Wen-Wen;Xin, Ying;Li, Mao-Wei;Wang, Shuai-Jun;Yu, Xiao-Feng;Sui, Da-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7919-7923
    • /
    • 2014
  • 20(S)-Protopanaxadiol (PPD), a ginsenoside isolated from Pananx quinquefolium L., has been shown to inhibit growth and proliferation in several cancer cell lines. The aim of this study was to evaluate its anticancer activity in human breast cancer cells. MCF-7 cells were incubated with different concentrations of 20(S)-PPD and cytotoxicity was evaluated by MTT assay. Occurrence of apoptosis was detected by DAPI and Annexin V-FITC/PI double staining. Mitochondrial membrane potential was measured with Rhodamine 123. The Bcl-2 and Bax expression were determined by Western blot analysis. Caspase activity was measured by colorimetric assay. 20(S)-PPD dose-dependently inhibited cell proliferation in MCF-7 cells, with an $IC_{50}$ value of $33.3{\mu}M$ at 24h. MCF-7 cells treated with 20(S)-PPD presented typical apoptosis, as observed by morphological analysis in cell stained with DAPI. The percentages of annexin V-FITC positive cells were 8.92%, 17.8%, 24.5% and 30.5% in MCF-7 cells treated with 0, 15, 30 and $60{\mu}M$ of 20(S)-PPD, respectively. Moreover, 20(S)-PPD could induce mitochondrial membrane potential loss, up-regulate Bax expression and down-regulate Bcl-2 expression. These events paralleled activation of caspase-9, -3 and PARP cleavage. Apoptosis induced by 20(S)-PPD was blocked by z-VAD-fmk, a pan-caspase inhibitor, suggesting induction of caspase-mediated apoptotic cell death. In conclusion, the 20(S)-PPD investigated is able to inhibit cell proliferation and to induce cancer cell death by a caspase-mediated apoptosis pathway.

A Modified Alkaline Hydrolysis of Total Ginsenosides Yielding Genuine Aglycones nad Prosapogenols

  • Im, kwang-Sik;Chang, Eun-Ha;Je, Nam-Gyung
    • Archives of Pharmacal Research
    • /
    • 제18권6호
    • /
    • pp.454-457
    • /
    • 1995
  • To improve the yield of genuine aglycones from glycosides, the conditions of alkaline hydrolysis were investigated, and a modified method was established. The modified method empolyed pyridine as an aprotic solvent. To complete the hydrolysis and obtain 20(S)-protopanaxadiol (1) and 20(S)-protopanaxatriol(2), which are the genuine aglycones of ginsenosides, total ginsenosides were refluxed with sodium methoxide in pyridine. Addition of methanol, a protic polar solvent to the reaction miuxture, led partial hydrolysis yielding a mixture of the genuine prosapogenols. Of the prosapogenols compound 3 and 6 characteristically possessed D-glucopyranosyl moiety attached at the sterically hindered C-20 hydroxyl group. 3 and 6 were not obtaijned by other hydrolysisw methods except by the soil bacterial hydrolysis.

  • PDF

역합성법에 의한 진세노사이드 유사체의 합성 (Retro-synthesis of Analogues of Ginsenosides)

  • 장은하;제남경;임광식
    • 약학회지
    • /
    • 제40권2호
    • /
    • pp.163-169
    • /
    • 1996
  • Glycosidation of 20(S)-protopanaxadiol obtained by the alkaline hydrolysis of total ginsenosides with 2,3,4,6-tetra-O-acetyl-${\alpha$-D-glucopyranosyl bromide in the presence of $CdCO_3$ in benzene-dioxane gave a mixture of acetylated monoglucosides and diglucosides in a total yield of 68%. Under the same condenstion condition, 20-dehydroxyglucosides were formed by dehydration of 12-O-glucosides. The structures of produced glycosides were elucidated as 3-O-${\beta$-D-glucopyranosyl-20(S)-protopanaxadiol, 12-O-${\beta$-D-glucopyranosyl-dammar-20(22), 24-dien-$3{\beta},12{\beta}$-diol, 3,12-di-O-${\beta}$-D-glucopyranosyl-dammar-20(22), 24-dien-$3{\beta},\;12{\beta}$-diol, respectively.

  • PDF

인삼 총사포닌, 디올계 및 트리올계 사포닌의 효과 1. 흰쥐 혈청 지질 및 당함량에 미치는 영향 (Comparative Studies on the Effects of Total, Protopanaxadiol and Protopanaxatriol saponins of Ginseng 1. Their Effects on Lipid and Glucose Content in Rat Serum)

  • 임창진;박은희;홍순근;이동권
    • Journal of Ginseng Research
    • /
    • 제5권1호
    • /
    • pp.41-48
    • /
    • 1981
  • Total saponin, protopanaxadiol-saponin and protopanaxatriol-saponin were isolated and purified from the side roots of red ginseng. After we administered them orally into rats during 5 weeks, we observed their effects on lipid and glucose content in rat serum. The change in body weight of protopanaxatriol- saponin treated group was slightly larger than those of other groups. Total lipid content in total saponin treated group showed an increase of about 20 % over that in control group. However, protopanaxadiol-saponin and protopanaxatriol- saponin treated groups showed no change. While triglyceride content in total saponin treated group decreased 29oyo compared to it s content in control group, its content in protopanaxatriol-saponin treated group increased 45%. Three saponin treated groups showed lower value than control group in total ant free cholesterol levels. While glucose content in total saponin treated group decreased slightly, that in Protopanaxadiol-saponin treated group decreased slightly compared to that in control group. And protopanaxatriol- saponin trented group showed the significant decrease of 25%. From these results, it is supposed that total saponin accelerates the conversion of lipid into glucose and that protopanaxatriol- saponin accelerates the conversion of glucose into lipid.

  • PDF

인삼사포닌의 소장내 최종대사물인 IH-901의 수용액중 가용화 (Solubilization of IH-901, a Novel Intestinal Metabolite of Ginseng Saponin, in Aqueous Solution)

  • 권오승;정연복
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권5호
    • /
    • pp.385-391
    • /
    • 2004
  • The purpose of the present study was to formulate the aqueous solution of $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol\;(IH-901)$, an intestinal bacterial metabolic derivative from Ginseng protopanaxadiol saponin. For this purpose, the effects of various solubilization agents such as cosolvents [ethanol, propylene glycol (PG), polyethylene glycol 300 (PEG 300), polyethylene glycol 400 (PEG 400), glycerin], surfactants $(Tween\;80,\;Cremophor^{\circledR}\;RH40,\;Cremophor^{\circledR}\;EL,\;Poloxamer\;407,\;Poloxamer\;188)$ and a complexation agent $[hydroxypropyl-{\beta}-cyclodextrin\;(HPBCD)]$, on the solubility of IH-90l in aqueous solution were evaluated. The solubility of IH-901 in water was under $1\;{\mu}g/ml\;at\;20^{\circ}C$. Cosolvents such as ethanol, PG, PEG 300, PEG 400 and glycerin did not enhance the solubility of IH-901 at the 0 - 40% concentration range. The solubility of IH-901 was significantly elevated by the addition of cosolvents over the 80% concentration range. On the other hand, tween 80, $Cremophor^{\circledR}\;EL,\;Cremophor^{\circledR}\;RH40$ and HPBCD showed enhanced effects on the solubility of IH-901. The enhanced effects of Poloxamer 407 or Poloxamer 188 on the IH-901 solubility were less pronounced compared with $Cremophor^{\circledR}\;EL\;or\;Cremophor^{\circledR}\;RH40$. As a results, $Cremophor^{\circledR}$ aqueous solution was selected as an optimum solvent system. The aqueous solutions containing 10% $Cremophor^{\circledR}\;EL$ and 7% $Cremophor^{\circledR}\;RH40$ were formulated as dosing solutions containing 5.0 mg/ml of IH-901 for its intravenous and oral administration, respectively. The formular showed physical stability after stored for 7 days at $4^{\circ}C$.

Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

  • Guoqing Ren;Weichao Lv;Yue Ding;Lei Wang;ZhengGuo Cui;Renshi Li;Jiangwei Tian;Chaofeng Zhang
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.543-551
    • /
    • 2023
  • Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, coimmunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-b1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.

20S-Protopanaxadiol, an aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1-AMP-activated protein kinase activation

  • Park, Sang Mi;Jung, Eun Hye;Kim, Jae Kwang;Jegal, Kyung Hwan;Park, Chung A;Cho, Il Je;Kim, Sang Chan
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.392-402
    • /
    • 2017
  • Background: Previously, we reported that Korean Red Ginseng inhibited liver fibrosis in mice and reduced the expressions of fibrogenic genes in hepatic stellate cells (HSCs). The present study was undertaken to identify the major ginsenoside responsible for reducing the numbers of HSCs and the underlying mechanism involved. Methods: Using LX-2 cells (a human immortalized HSC line) and primary activated HSCs, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assays were conducted to examine the cytotoxic effects of ginsenosides. $H_2O_2$ productions, glutathione contents, lactate dehydrogenase activities, mitochondrial membrane permeabilities, apoptotic cell subpopulations, caspase-3/-7 activities, transferase dUTP nick end labeling (TUNEL) staining, and immunoblot analysis were performed to elucidate the molecular mechanism responsible for ginsenoside-mediated cytotoxicity. Involvement of the AMP-activated protein kinase (AMPK)-related signaling pathway was examined using a chemical inhibitor and small interfering RNA (siRNA) transfection. Results and conclusion: Of the 11 ginsenosides tested, 20S-protopanaxadiol (PPD) showed the most potent cytotoxic activity in both LX-2 cells and primary activated HSCs. Oxidative stress-mediated apoptosis induced by 20S-PPD was blocked by N-acetyl-$\text\tiny L$-cysteine pretreatment. In addition, 20S-PPD concentration-dependently increased the phosphorylation of AMPK, and compound C prevented 20S-PPD-induced cytotoxicity and mitochondrial dysfunction. Moreover, 20S-PPD increased the phosphorylation of liver kinase B1 (LKB1), an upstream kinase of AMPK. Likewise, transfection of LX-2 cells with LKB1 siRNA reduced the cytotoxic effect of 20S-PPD. Thus, 20S-PPD appears to induce HSC apoptosis by activating LKB1-AMPK and to be a therapeutic candidate for the prevention or treatment of liver fibrosis.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

20(S)-Protopanaxadiol 및 20(S)-Protopanaxatriol이 활성화된 비만세포로부터의 염증 매개체 유리에 미치는 영향 (Effects of 20(S)-Protopanaxadiol and 20(S)-Protopanaxatriol on the Inflammatory Mediators Release from the Activated Mast Cells)

  • 노재열;한용남;최광태;이창호
    • Journal of Ginseng Research
    • /
    • 제33권4호
    • /
    • pp.316-323
    • /
    • 2009
  • 인삼 사포닌은 면역계에 다양한 약리 효과를 발휘한다. 20(S)-프로토파낙사다이올 (PPD) 및 20(S)- 프로토파낙사트리올 (PPT)은 장내 세균에 의하여 생성되는 인삼 대사체의 일종이며 생체 내 투여 시 순환계에서 탐지된다. 활성화된 비만 세포로부터의 염증 매개체 유리에 미치는 20(S)-프로토파낙사다이올 (PPD) 및 20(S)-프로토파낙사트리올 (PPT)의 영향을 평가하였다. 인삼 사포닌 대사체를 처치 후, 히스타민 유리는 활성화된 해명 폐 비만세포에서 평가하였으며, 인터루킨-4, 인터루킨-8, 및 종양괴사인자-알파 유리는 HMC-1 비만세포에서 평가하였다. 결과는 다음과 같다. PPT는 최고 $100\;{\mu}M$ 농도에서 PMA에 의하여 자극된 HMC-1 세포로부터의 인터루킨-4 유리를 완전히 차단하였다. 또한, 이는 HMC-1 세포로부터의 인터루킨-8의 유리를, PMA와 DMSO동시 처치 시얻어진 수치를 기준으로 대략 40-50% 정도 억제하였다. PPD는 최고 $100\;{\mu}M$ 농도에서 해명 폐 비만세포로부터의 히스타민 유리를 초래하였으나 통계적 유의성은 없었다. PPD는 HMC-1 세포에 PMA와 DMSO 동시 처치 시 얻어진 수치를 기준으로 할 때, 인터루킨-4의 유리를 대략 89% 정도 억제하였으나, 인터루킨-8의 유리에는 유의적인 효과를 초래하지 않았다. 그러나 PPD 및 PPT 모두, PMA에 의하여 자극된 HMC-1 세포로부터의 종양괴사 인자-알파의 유리에는 전혀 효과를 나타내지 않았다. 그러므로 본 연구 결과는 PPD와 PPT가 경구로 투여된 인삼 추출물의 면역조절 작용을 담당하는 장내 인삼 대사체 중의 한 종류임을 제시한다.