• Title/Summary/Keyword: (20R)-protopanaxadiol

Search Result 23, Processing Time 0.02 seconds

A Novel Ginsenosidase from an Aspergillus Strain Hydrolyzing 6-O-Multi-Glycosides of Protopanaxatriol-Type Ginsenosides, Named Ginsenosidase Type IV

  • Wang, Dong-Ming;Yu, Hong-Shan;Song, Jian-Guo;Xu, Yu-Feng;Liu, Chun-Ying;Jin, Feng-Xie
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1057-1063
    • /
    • 2011
  • Herein, a novel ginsenosidase, named ginsenosidase type IV, hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides (PPT), such as Re, R1, Rf, and Rg2, was isolated from the Aspergillus sp. 39g strain, purified, and characterized. Ginsenosidase type IV was able to hydrolyze the 6-O-${\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Re and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-xyloside of R1 into ginsenoside Rg1. Subsequently, it could hydrolyze the 6-O-${\beta}$-D-glucoside of Rg1 into F1. Similarly, it was able to hydrolyze the 6-O-$_{\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Rg2 and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-glucoside of Rf into Rh1, and then further hydrolyze Rh1 into its aglycone. However, ginsenosidase type IV could not hydrolyze the 3-O- or 20-O-glycosides of protopanaxadiol-type ginsenosides (PPD), such as Rb1, Rb2, Rb3, Rc, and Rd. These exhibited properties are significantly different from those of glycosidases described in Enzyme Nomenclature by the NC-IUBMB. The optimal temperature and pH for ginsenosidase type IV were $40^{\circ}C$ and 6.0, respectively. The activity of ginsenosidase type IV was slightly improved by the $Mg^{2+}$ ion, and inhibited by $Cu^{2+}$ and $Fe^{2+}$ ions. The molecular mass of the enzyme, based on SDS-PAGE, was noted as being approximately 56 kDa.

Identification and confirmation of 14-3-3 ζ as a novel target of ginsenosides in brain tissues

  • Chen, Feiyan;Chen, Lin;Liang, Weifeng;Zhang, Zhengguang;Li, Jiao;Zheng, Wan;Zhu, Zhu;Zhu, Jiapeng;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.465-472
    • /
    • 2021
  • Background: Ginseng can help regulate brain excitability, promote learning and memory, and resist cerebral ischemia in the central nervous system. Ginsenosides are the major effective compounds of Ginseng, but their protein targets in the brain have not been determined. Methods: We screened proteins that interact with the main components of ginseng (ginsenosides) by affinity chromatography and identified the 14-3-3 ζ protein as a potential target of ginsenosides in brain tissues. Results: Biolayer interferometry (BLI) analysis showed that 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, exhibited the highest direct interaction to the 14-3-3 ζ protein. Subsequently, BLI kinetics analysis and isothermal titration calorimetry (ITC) assay showed that PPD specifically bound to the 14-3-3 ζ protein. The cocrystal structure of the 14-3-3 ζ protein-PPD complex showed that the main interactions occurred between the residues R56, R127, and Y128 of the 14-3-3 ζ protein and a portion of PPD. Moreover, mutating any of the above residues resulted in a significant decrease of affinity between PPD and the 14-3-3 ζ protein. Conclusion: Our results indicate the 14-3-3 ζ protein is the target of PPD, a ginsenoside metabolite. Crystallographic and mutagenesis studies suggest a direct interaction between PPD and the 14-3-3 ζ protein. This finding can help in the development of small-molecular compounds that bind to the 14-3-3 ζ protein on the basis of the structure of dammarane-type triterpenoid.

Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I

  • Xiao, Yongkun;Liu, Chunying;Im, Wan-Teak;Chen, Shuang;Zuo, Kangze;Yu, Hongshan;Song, Jianguo;Xu, Longquan;Yi, Tea-Hoo;Jin, Fengxie
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.186-195
    • /
    • 2019
  • Background: Notoginseng stem-leaf (NGL) ginsenosides have not been well used. To improve their utilization, the biotransformation of NGL ginsenosides was studied using ginsenosidase type-I from Aspergillus niger g.848. Methods: NGL ginsenosides were reacted with a crude enzyme in the RAT-5D bioreactor, and the dynamic changes of multi-ginsenosides of NGL were recognized by HPLC. The reaction products were separated using a silica gel column and identified by HPLC and NMR. Results: All the NGL ginsenosides are protopanaxadiol-type ginsenosides; the main ginsenoside contents are 27.1% Rb3, 15.7% C-Mx1, 13.8% Rc, 11.1% Fc, 7.10% Fa, 6.44% C-Mc, 5.08% Rb2, and 4.31% Rb1. In the reaction of NGL ginsenosides with crude enzyme, the main reaction of Rb3 and C-Mx1 occurred through Rb3${\rightarrow}$C-Mx1${\rightarrow}$C-Mx; when reacted for 1 h, Rb3 decreased from 27.1% to 9.82 %, C-Mx1 increased from 15.5% to 32.3%, C-Mx was produced to 6.46%, finally into C-Mx and a small amount of C-K. When reacted for 1.5 h, all the Rb1, Rd, and Gyp17 were completely reacted, and the reaction intermediate F2 was produced to 8.25%, finally into C-K. The main reaction of Rc (13.8%) occurred through Rc${\rightarrow}$C-Mc1${\rightarrow}$C-Mc${\rightarrow}$C-K. The enzyme barely hydrolyzed the terminal xyloside on 3-O- or 20-O-sugar-moiety of the substrate; therefore, 9.43 g C-Mx, 6.85 g C-K, 4.50 g R7, and 4.71 g Fc (hardly separating from the substrate) were obtained from 50 g NGL ginsenosides by the crude enzyme reaction. Conclusion: Four monomer ginsenosides were successfully produced and separated from NGL ginsenosides by the enzyme reaction.