• Title/Summary/Keyword: (1,m) Type Inventory System

Search Result 6, Processing Time 0.025 seconds

A Study on the Decision Determination of Replenishment using Dynamic Approach in (1,m)Type Inventory System (DP법을 이용한 (1,m)형 재고시스템의 보충 의사결정에 관하여)

  • 이재원;이철영;조덕필
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.37-45
    • /
    • 2000
  • Centralized safety stock in a periodic replenishment system which consists of one central warehouse and m regional warehouse can reduce backorders allocating the centralized safety stocks to regional warehouse in a certain instant of each replenishment cycle. If the central warehouse can not monitoring inventories in the regional warehouse, then we have to predetermine the instant of allocation according to demand distribution and this instant must be same for all different replenishment cycle. However, transition of inventory level in each cycle need not to be same, and therefore different instant of the allocation may results reduced shortage compare to the predetermined instant of allocation. In this research, we construct a dynamic model based on the assumption of monitoring inventories in the regional warehouse everyday, and develop an algorithm minimize shortage in each replenishment cycle using dynamic programming approach.

  • PDF

Analysis of an M/M/1 Queue with an Attached Continuous-type (s,S)-inventory ((s,S)-정책하의 연속형 내부재고를 갖는 M/M/1 대기행렬모형 분석)

  • Park, Jinsoo;Lee, Hyeon Geun;Kim, Jong Hyeon;Yun, Eun Hyeuk;Baek, Jung Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.19-32
    • /
    • 2018
  • This study focuses on an M/M/1 queue with an attached continuous-type inventory. The customers arrive into the system according to the Poisson process, and are served in their arrival order; i.e., first-come-first-served. The service times are assumed to be independent and identically distributed exponential random variable. At a service completion epoch, the customer consumes a random amount of inventory. The inventory is controlled by the traditional (s, S)-inventory policy with a generally distributed lead time. A customer that arrives during a stock-out period assumed to be lost. For the number of customers and the inventory size, we derive a product-form stationary joint probability distribution and provide some numerical examples. Besides, an operational strategy for the inventory that minimizes the long-term cost will also be discussed.

Minimize Shortages in Two-Phase Periodic Replensihment System Using Dynamic Approach ((1, m)형 재고시스템에 의한 안전재고의 집중과 최적분배계획에 관한 연구)

  • 이재원;이철영;조덕필
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.83-90
    • /
    • 1999
  • Centralized safety stock in a periodic replenishment system which consists of one central warehouse and m regional warehouse can reduce backorders allocation the centralized safety stocks to regional warehouse in a certain instant of each replenishment cycle. If the central warehouse can not monitoring inventories in the regional warehouse, then we have to predetermine the instant of allocation according to demand distribution and this instant must be same for all different replenishment cycle. However, transition of inventory level in each cycle need not to be same, and therefore different instant of the allocation may results reduced shortage compare to the predetermined instant of allocation. In this research, we construct a dynamic model based on the assumption of monitoring inventories inventories in the regional warehouse everyday, and develop an algorithm minimize shortage in each replenishment cycle using dynamic programming approach.

The System Architecture and Standardzation of Production IT Convergence for Smart Factory (스마트공장을 위한 IT 융합 표준화 동향 분석과 시스템 구조)

  • Cha, Suk Keun;Yoon, Jae Young;Hong, Jeong Ki;Kang, Hyun Gu;Cho, Hyeon Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • Smart factory requires 4 Zero factors including Zero Waiting-time, Zero Inventory, Zero Defect, Zero Down-time) that needs IT convergence for production resources of 4M1E(Man, Machine, Material, Method, Energy) in real time and event processing in all type of manufacturing enterprises. This paper will be explaining about core emerging production IT convergence technologies including cyber device security, 4M1E integration, real time event driven architecture, common platform of manufacturing standard applications, smart factory to-be model for small and medium manufacturing enterprises.

Comparison of Forest Growing Stock Estimates by Distance-Weighting and Stratification in k-Nearest Neighbor Technique (거리 가중치와 층화를 이용한 최근린기반 임목축적 추정치의 정확도 비교)

  • Yim, Jong Su;Yoo, Byung Oh;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.374-380
    • /
    • 2012
  • The k-Nearest Neighbor (kNN) technique is popularly applied to assess forest resources at the county level and to provide its spatial information by combining large area forest inventory data and remote sensing data. In this study, two approaches such as distance-weighting and stratification of training dataset, were compared to improve kNN-based forest growing stock estimates. When compared with five distance weights (0 to 2 by 0.5), the accuracy of kNN-based estimates was very similar ranged ${\pm}0.6m^3/ha$ in mean deviation. The training dataset were stratified by horizontal reference area (HRA) and forest cover type, which were applied by separately and combined. Even though the accuracy of estimates by combining forest cover type and HRA- 100 km was slightly improved, that by forest cover type was more efficient with sufficient number of training data. The mean of forest growing stock based kNN with HRA-100 and stratification by forest cover type when k=7 were somewhat underestimated ($5m^3/ha$) compared to statistical yearbook of forestry at 2011.

An Analysis of Potential Environmental Impact Reduction for Combined Sewer Overflow Project using a LCA Methodology (LCA 기법을 활용한 합류식 하수도 월류수 사업의 잠재적 환경영향 저감효과 분석)

  • Jo, Hyun-Jung;Song, Jang-Hwan;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.885-892
    • /
    • 2011
  • In this study, LCA(Life Cycle Assessment) on 'Saemangum CSO Project' was carried out to evaluate environmental impact which occurred during the construction and operation periods and the potential environmental impact reduction was analyzed by comparing production and reduction level of pollution loads. LCA was conducted out according to the procedure of ISO14040 which suggested Goal and Scope Definition, Life Cycle Inventory Analysis, Life Cycle Impact Assessment and Interpretation. In the Goal and Scope Definition, the functional unit was 1 m3 of CSO, the system boundary was construction and operation phases, and the operation period was 20 years. For the data collection and inventory analysis, input energies and materials from civil, architecture, mechanical and electric fields are collected from design sheet but the landscape architecture field is excepted. LCIA(Life Cycle Impact Assessment) was performed following the procedure of Eco-Labelling Type III under 6 categories which were resource depletion, eutrophication, global warming, ozone-layer destruction, and photochemical oxide formation. In the result of LCA, 83.4% of environmental impact occurred in the construction phase and 16.6% in the operation phase. Especially 78% of environmental impact occurred in civil works. The Global warming category showed the highest contribution level in the environmental impact categories. For the analysis on potential environmental impact reduction, the reduction and increased of environmental impact which occurred on construction and operation phases were compared. In the case of considering only the operation phase, the result of the comparison showed that 78% of environmental impact is reduced. On the other hand, when considering both the construction and operation phases, 50% of environmental impact is increase. Therefore, this study showed that eco-friendly material and construction method should be used for reduction of environmental impact during life cycle, and it is strongly necessary to develop technology and skills to reduce environmental impact such as renewable energies.