• Title/Summary/Keyword: (001) 사파이어 기판 ZnO

Search Result 4, Processing Time 0.023 seconds

Sapphire orientation dependence of the crystallization of ZnO thin films (사파이어 기판의 방향에 따른 ZnO 박막의 결정화 거동)

  • 조태식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1036-1038
    • /
    • 2001
  • The sapphire orientation dependence of the crystallization of ZnO thin films has been studied using real-time synchrotron x-ray scattering. The amorphous ZnO thin films with a 2400-${\AA}$-thick were grown on sapphire(110) and sapphire(001) substrates by radio frequency magnetron sputtering at room temperature. The amorphous ZnO films were crystallization into epitaxial ZnO(002) grains both on the sapphire(110) and on the sapphire(001) substrates. The epitaxial quality, such as mosaic distribution and crystal domain size, of the ZnO grains on the sapphire(110) is high, similar to that of the ZnO grains on the sapphire(001). With increasing the annealing temperature to 600$^{\circ}C$, the mosaic distribution and the crystal domain size of ZnO(002) grains in the film normal direction was improved and decreased, respectively.

  • PDF

Effect of Variation of Substrate Temperature and Oxygen Gas Flow of the ZnO Thin Films Deposited on Sapphire (사파이어 기판 위에 증착된 ZnO 박막의 기판온도와 산소 가스량에 따른 특성)

  • Kim, Jae-Hong;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.652-655
    • /
    • 2005
  • ZnO thin films on (001) $Al_2O_3$ substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters, such as oxygen gas flow, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for substrate temperatures in the range of $300\~450^{\circ}C$ and oxygen gas flow rate of $100\~900$ sccm. We investigated the structural and optical properties of ZnO thin films using X-ray diffraction(XRD) and photoluminescence(PL).

Effects of post-annealing treatment at various temperature on the light emission properties of ZnO thin films on sapphire (사파이어 기판 위에 증착된 ZnO 박막의 후열처리에 따른 발광특성 연구)

  • 강홍성;심은섭;강정석;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.119-122
    • /
    • 2001
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique at the oxygen pressure of 350 mTorr. In order to investigate the effect of post-annealing treatment with oxygenn pressure of 350 mTorr on the optical property of ZnO thin films, films have been annealed at various substrate temperatures after deposition. After post-annealing treatment in the oxygen ambient, the optical properties of the ZnO thin films were characterized by PL(Photoluminescence) and structural properties of the ZnO were characterized by XRD, and have investigated structural property and optical property for application of light emission device.

  • PDF

Post annealing effect on the photoluminescence properties of ZnO thin films prepared by atomic layer epitaxy (Atomic Layer Epitaxy에 의해 제작된 ZnO 박막의 후열처리에 따른 발광특성 연구)

  • 신경철;임종민;강승모;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.103-108
    • /
    • 2004
  • High-quality ZnO films were grown on sapphire (001) substrates by the atomic layer epitaxy (ALE) technique using DEZn as a Zinc precusor and $H_2O $ as an oxidant at both $170^{\circ}C$ and $400^{\circ}C$ which are in the ALE and the CVD process temperature ranges, respectively. The films were annealed in an oxygen atmosphere in the temperature range from 600 to 100$0^{\circ}C$ for an hour and then investigate photoluminescence (PL) properties using He-Cd laser. PL intensity tends to increases as the annealing temperature increase for both the annealed ZnO films grown at $170^{\circ}C$ and $400^{\circ}C$ , while PL did not nearly occur at the as-deposited ones. The PL intensity of the ZnO film grown at $400^{\circ}C$ is low after it is annealed at high temperature owing to a large number of Zn-Zn bonds although it has increased in the visible light wavelength region after annealing. In contrast the PL intensity has increased significant in the visible light region after annealing