• Title/Summary/Keyword: (+)-Gallocatechin gallate

Search Result 24, Processing Time 0.022 seconds

Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra;Jin, Yong-Ri;Lee, Jung-Jin;Lim, Yong;Kim, Tack-Joong;Oh, Ki-Wan;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

Study on the of the Correlation between Soil Chemical Properties and Bioactive Compounds of Acer tegmentosum Maxim.

  • Lee, Dong Hwan;Park, Youngki;Hong, Seong Su;Park, Gwang Hun;Kim, Hyun-Jun
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.566-574
    • /
    • 2021
  • This research was carried out to investigate the correlation between soil chemical properties and bioactive compounds of Acer tegmentosum Maxim. The methods of determining bioactive compounds were determined by high performance liquid chromatography, that contained (-)-gallocatechin (0.04±0.01 ~ 0.43±0.28%), salidroside (0.90±0.06 ~ 3.86±0.59%), tyrosol (0.03±0.00 ~ 0.43±0.00%), (-)-catechin (0.05±0.01 ~ 0.37±0.14%), 6'-O-galloylsalidroside (0.02± 0.01 ~ 0.31±0.06%), (-)-epicatechin-gallate (0.01±0.00 ~ 0.04±0.01%). The soil chemical properties analysis such as soil pH, electric conductivity (EC), organic matter (OM), total nitrogen (TN), available phosphate (Avail. P2O5), exchangeable cation and cation exchange capacity (CEC) were performed following the standard manual. The correlation analysis between soil chemical properties and bioactive compounds of A. tegmentosum, soil pH, available phosphate and exchangeable cation (Ca2+ and Mg2+) were negatively correlated with content of salidroside. On the other hand, soil exchangeable cation (Na+) showed positive correlation with content of salidroside. The results of this study was able to investigate the correlation between soil chemical properties and bioactive compounds of A. tegmentosum.

Physicochemical Properties and Antioxidant Activities of Loose-leaf Green Tea Commercially Available in Korea (국내 시판 잎차 형태 녹차의 이화학 특성 및 산화방지 활성)

  • Lee, Lan-Sook;Kim, Sang-Hee;Park, Jong-Dae;Kim, Young-Boong;Kim, Young-Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.419-424
    • /
    • 2015
  • The objective of this study was to investigate the physicochemical and antioxidant properties of a variety of commonly consumed commercial green tea. Green tea samples with the same commercial name produced at different regions were analyzed. High-grade tea samples showed higher values of lightness (L) and greenness (-a). Additionally, compared to other varieties of teas, high-grade tea samples showed higher levels of catechin, gallocatechin gallate (GCg), epicatechin gallate (ECg), theanine, and methylxanthines and a lower level of epigallocatechin (EGC). The antioxidant activity of green tea was also investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical assays. High-grade teas were observed to have higher antioxidant activities. The results of this study indicate that the catechin content, such as EGCg, GCg, and ECg levels, was found to positively influence the total antioxidant activity of green tea.

Interaction with Polyphenols and Antibiotics (폴리페놀 화합물과 항생제의 상호작용)

  • Cho, Ji Jong;Kim, Hye Soo;Kim, Chul Hwan;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.476-481
    • /
    • 2017
  • Polyphenols are secondary metabolites produced by higher plants and have been used as antiallergic, anticancer, antihypertensive, antiinflammatory, antimicrobial and antioxidant agents. They are generally divided into flavonoids and non-flavonoids. The antimicrobial activity of flavonoids are stronger than that of non-flavonoids. The skeleton structures of flavonoids possessing antimicrobial activity are chalcone, flavan-3-ol (catechin), flavanone, flavone, flavonol and proanthocyanidin. The flavonols are shown antibacterial activity against several gram-positive bacteria (Actinomyces naeslundii, Lactobacillus acidophilus and Staphylococcus aureus) and gram-negative bacteria (Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella melaninogenica and Prevotella oralis). Among of non-flavonoids, caffeic acids, ferulic acids and gallic acids showed antimicrobial activity against gram-positive (Listeria monocytogenes and S. aureus) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). These are found to be more efficient against the E. coli, L. monocytogenes, P. aeruginosa and S. aureus than antibiotics such as gentamicin and streptomycin. The kaempferol and quercetin showed synergistic effect with ciprofloxacin and rifampicin against S. aureus and methicillin resistant S. aureus (MRSA). Epigallocatechin gallate (EGCG) acts synergistically with various ${\beta}-lactam$ antibiotics against MRSA. In particular, the epicatechin, epigallocatechin (EGC), EGCG and gallocatechin gallate from Korean green tea has antibacterial activity against MRSA clinical isolates and the combination of tea polyphenols and oxacillin was synergistic for all the clinical MRSA isolates.