• Title/Summary/Keyword: (${Pb_{1-x}}{Ca_x}$)(${Ca_{1/3}}{Nb_{2/3}}$)$O_3$

Search Result 17, Processing Time 0.03 seconds

Effect of Bond Valence on Microwave Dielectric Properties of (${Pb_{1-x}}{Ca_x}$)(${Ca_{1/3}}{Nb_{2/3}}$)$O_3$Ceramics ((${Pb_{1-x}}{Ca_x}$)(${Ca_{1/3}}{Nb_{2/3}}$)$O_3$세라믹스의 마이크로파 유전특성에 미치는 결합원자가의 영향)

  • 김응수;이형규
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.678-682
    • /
    • 2001
  • 복합 페롭스카이트(P $b_{1-x}$C $a_{x}$)(C $a_{1}$3/N $b_{2}$3/) $O_3$(0.6$\leq$x$\leq$0.8) 세라믹스의 마이크로파 유전특성과 결합원자가사이의 관계에 대하여 고찰하였다. 유전상수(K)는 Ca 치환량이 증가함에 따라 A-자리의 이온반경 세제곱에 비례하여 감소하며, Qf 값은 증가하였다. Ca 치환량이 증가함에 따라 관찰된 이온분극률($\alpha$$_{obs}$)과 이론적인 이온분극률($\alpha$$_{theo}$) 사이의 편차는 3.47%에서 6.37%로 증가하였다. 이는 A-자리 결합원자가의 감소에 따른 결합강도의 감소로 해석하였다. 소결시편의 공진주파수의 온도계수(TCF)는 AB $O_3$페롭스카이트 화합물의 A-자리 결합원자가에 의존하였다.

  • PDF

Microwave Dielectric Properties of (${Pb_{0.2}}{Ca_{0.8}}$)[$({Ca_{1/3}}{Nb_{2/3}})_{1-x}{Ti_x}$]$O_3$ Ceramics (Microwave Dielectric Properties of (${Pb_{0.2}}{Ca_{0.8}}$)[$({Ca_{1/3}}{Nb_{2/3}})_{1-x}{Ti_x}$$O_3$ 세라믹스의 마이크로파 유전특성)

  • Kim, Eung-Soo;Kim, Yong-Hyun;Kim, Jun-Chul;Bang, Kyu-Seok
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.708-712
    • /
    • 2001
  • Microwave dielectric properties of $(Pb_{0.2}Ca_{0.8})[(Ca_{1/3}Nb{2/3})_{1-x}Ti_x]O_3$ ceramics were investigated as a function of $Ti^{4+}$ content (0.05$\leq$x$\leq$0.35). A single perovskite phase was obtained from x=0.05 to x=0.15, and $TiO_2$ and $CaNb_2O^6$ were detected as a secondary phase beyond x=0.2. The structure was changed from orthorhombic at x=0.05 to cubic at x=0.35. Dielectric constant(K) was increased with increase of $Ti^{4+}$ content due to increase of rattling effect, and was inversely proportional to the cube of the average radius of B-site cation, however, Qf value was decreased, which was due to the decrease of grain size and the secondary phase. With the increase of $Ti^{4+}$ content, the temperature coefficient of resonant frequency(TCF) was controlled from -27.36 ppm/$^{\circ}C$ value to +18.4 ppm/$^{\circ}C$ value, which was caused by the influence of tolerance factor(t) and the bond valence of B-site. Typically, K of 51.67, Qf of 7268(GHz), TCF of 0 ppm/$^{\circ}C$ were obtained in the $(Pb_{0.2}Ca_{0.8})[(Ca_{1/3}Nb_{2/3})_{0.8}Ti_0.2]O_3$ sintered at 13$50^{\circ}C$ for 3h.

  • PDF

A Study on the Electrical and Optical Characteristics of CLN-PZT Ceramics (CLN-PZT 세라믹스의 전기, 광학 특성에 관한 연구)

  • Kang, Won-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.799-801
    • /
    • 1988
  • This paper was studied on the effects of Ca-La-Nb substitution and Zr/Ti ratio variation to Pb(Zr, Ti)$O_3$ system on structural, electrical, optical and sound level characteristics in order to develope the piezoelectric and electrooptic ceramic devices. Also the specimens were prepared by the two stage sintering technique. The molecular formular was X($CaO{\cdot}1/4La_{2}O_{3}{\cdot}1/4Nb_{2}O_{5}){\cdot}(1-X)Pb(Zr_{Y}Ti_{1-Y})O_{3}$(x=100X, y=100Y), and the variation of x was $6{\sim}12$, y was 60${\sim}$49 and second stage sintering time was 20${\sim}$40 hours. The experimental results obtained from this study are as follows : 1. The density was decreased, the grain size was increased according to increase of Ca-La-Nb substitution. 2. The crystal structure was rhombohedral in composition 6/60/40, and the crystal structure was tetragonal and cubic according to increase of Ca-La-Nb substitution. 3. The Ca substitution of PZT system enhanced the sintering property. The Pb site vacancy resulting from the substitution of La-Nb increased the dielectrical constant, the piezoelectric charge constant, the dielectric loss and decreased the coercive field. 4. The resistivity of PZT system which has the P type conduction mechanism increased according to substitution of La-Nb because of the substituent acting as donor. 5. The PZT ceramics varied from ferroelectric substance according to increase of Ca-La-Nb substituent. The coercive field and saturation remanent polarization decreased, and at last straight line according to increase of La-Nb substitution. 6. The amount of Ca-La-Nb substitution to improve the light transmittance of speciment was 10 mol%, the Zr/Ti ratio was 49/51, and the second stage sintering time was 40 hours. 7. According to Ca-La-Nb substitution, the specimens was to be transparent. The 7.5/51/49 specimen was suitable for transparent sound vibrator because it had 58% light transmittance (thick 0.2[mm], wave length 700[mm]) and 48% electromechanical coupling factor.

  • PDF

A Study on the Piezoelectric Characteristics of Ca-Substituded $PbTiO_3$ Ceramics (Ca가 치환된 $PbTiO_3$계 세라믹스의 압전 특성에 관한 연구)

  • Park, J.H.;Yoon, S.J.;Lee, D.H.;Paik, D.S.;Park, C.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.744-746
    • /
    • 1992
  • In this study, we investigated structural, electrical characteristics and studied the conditions which improved hydrostatic constants in hydrophones as we changed x = 0.1, 0.25, 0.35, 0.4 and y = 0.04, 0.08, 0.12, 0.16 in $(Pb_{1-x}Ca_x)[(Mg_{1/3}Nb_{2/3})_yTi_{1-0.01}Mn_{0.01}]O_3$ ceramics in which Ca was substituted with Pb and $Pb(Mg_{1/3}Nb_{2/3})O_3$ was added to decrease sintering temperature in $PbTiO_3$. When Ca was substituted 0.25[mol], the largest electro-mechanical anisotropy ($k_t/k_p$) was found ($k_t{\fallingdotseq}50,k_p{\fallingdotseq}4$), and the less $Pb(Mg_{1/3}Nb_{2/3})O_3$ and the stronger poling field, the larger this anisotropy was. When Ca=0.25[mol], $Pb(Mg_{1/3}Nb_{2/3})O_3=0.08[mol]$ were substituted, ($k_t/k_p$)(=12, 3) was large, permittivity was low and hydrostatic constants were high. Therefore, this composition is promising as wide band ultrasonic devices in water.

  • PDF

Effect of A-Site Substitution on the Dielectric Properties of PZN Ceramics (A-자리 치환에 따른 PZN 세라믹스의 유전특성)

  • 조상희;백종갑;손정호;김정주;김남경
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.635-641
    • /
    • 1995
  • The effects of A-site substitution with alkaline-earth ions (Ca, Sr and Ba) on the perovskite-phase formation and dielectric properties for Pb1-xMx(Zn1/3Nb2/3)O3 (0.0 x 0.5)-based relaxors were studied. Considerable improvements in the sinterability and the extent fo perovskite formation were observed with increasing the A-site substitution (x) and sintering temperature. The maximum dielectric permittivity appeared at x=0.1 for Sr and Ba substitutiion, while the relative dielectric permittivity was almost invariant in the case of Ca ion substitution. Curie temperature decreased with increasing relative amount of Sr and Ba ions but was almost invariant in case of Ca ion substitution. With increasing the amount of x, the diffuseness parameter ($\delta$) increased but the maximum dielectric constant decreased, demonstrating an enhanced diffuse phase transition (DPT) in the presence of alkaline-earth cations.

  • PDF

The Dielectrical Properties of $(1-x)(Sr_a.Pb_b.Ca_c)TiO_3-xB_i2O_3.TiO_2$ system affected by $Bi_2O_3.3TiO_2$ amounts and $MnO_2$ ($(1-x)(Sr_a.Pb_b.Ca_c)TiO_3-xB_i2O_3.TiO_2$계에서의 $Bi_2O_3.3TiO_2$$MnO_2$첨가에 따른 유전특성에 관한 연구)

  • 박상도;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this study, (Sr.Pb.Ca)TiO3-Bi2O3.3TiO2(SPCT) systems were investigated to develop a new material which has a high dielectric constant, a low dielectric loss and a small TCC(Temperature Coefficient of Capa-citance), and are suitable for high voltage applications as a function of the additions of Bi2O3.3TiO2 from 5 mol.% to 9 mol.%. The result obtained from our investigation showed that up to 6 mol.% Bi2O3.3TiO ad-dition the dielectric constant increased and it deteriorated at higher concentrations with increasing amount of the acicular grains. As a result of some dopants (SiO2, Nb2O3, MnO2) addition to SPCT, the specimens with MnO2 showed good dielectric properties. The dielectric constant decreased, but the TCC was improved with the addition of MnO2 from 0.15 wt.% to 0.45 wt. %.

  • PDF