• Title/Summary/Keyword: 'Speech recognition

Search Result 2,053, Processing Time 0.023 seconds

A Study on the Multilingual Speech Recognition using International Phonetic Language (IPA를 활용한 다국어 음성 인식에 관한 연구)

  • Kim, Suk-Dong;Kim, Woo-Sung;Woo, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3267-3274
    • /
    • 2011
  • Recently, speech recognition technology has dramatically developed, with the increase in the user environment of various mobile devices and influence of a variety of speech recognition software. However, for speech recognition for multi-language, lack of understanding of multi-language lexical model and limited capacity of systems interfere with the improvement of the recognition rate. It is not easy to embody speech expressed with multi-language into a single acoustic model and systems using several acoustic models lower speech recognition rate. In this regard, it is necessary to research and develop a multi-language speech recognition system in order to embody speech comprised of various languages into a single acoustic model. This paper studied a system that can recognize Korean and English as International Phonetic Language (IPA), based on the research for using a multi-language acoustic model in mobile devices. Focusing on finding an IPA model which satisfies both Korean and English phonemes, we get 94.8% of the voice recognition rate in Korean and 95.36% in English.

Speech Recognition Using MSVQ/TDRNN (MSVQ/TDRNN을 이용한 음성인식)

  • Kim, Sung-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.268-272
    • /
    • 2014
  • This paper presents a method for speech recognition using multi-section vector-quantization (MSVQ) and time-delay recurrent neural network (TDTNN). The MSVQ generates the codebook with normalized uniform sections of voice signal, and the TDRNN performs the speech recognition using the MSVQ codebook. The TDRNN is a time-delay recurrent neural network classifier with two different representations of dynamic context: the time-delayed input nodes represent local dynamic context, while the recursive nodes are able to represent long-term dynamic context of voice signal. The cepstral PLP coefficients were used as speech features. In the speech recognition experiments, the MSVQ/TDRNN speech recognizer shows 97.9 % word recognition rate for speaker independent recognition.

Speaker-dependent Speech Recognition Algorithm for Male and Female Classification (남녀성별 분류를 위한 화자종속 음성인식 알고리즘)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.775-780
    • /
    • 2013
  • This paper proposes a speaker-dependent speech recognition algorithm which can classify the gender for male and female speakers in white noise and car noise, using a neural network. The proposed speech recognition algorithm is trained by the neural network to recognize the gender for male and female speakers, using LPC (Linear Predictive Coding) cepstrum coefficients. In the experiment results, the maximal improvement of total speech recognition rate is 96% for white noise and 88% for car noise, respectively, after trained a total of six neural networks. Finally, the proposed speech recognition algorithm is compared with the results of a conventional speech recognition algorithm in the background noisy environment.

A Study on Realization of Speech Recognition System based on VoiceXML for Railroad Reservation Service (철도예약서비스를 위한 VoiceXML 기반의 음성인식 구현에 관한 연구)

  • Kim, Beom-Seung;Kim, Soon-Hyob
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper suggests realization method for real-time speech recognition using VoiceXML in telephony environment based on SIP for Railroad Reservation Service. In this method, voice signal incoming through PSTN or Internet is treated as dialog using VoiceXML and the transferred voice signal is processed by Speech Recognition System, and the output is returned to dialog of VoiceXML which is transferred to users. VASR system is constituted of dialog server which processes dialog, APP server for processing voice signal, and Speech Recognition System to process speech recognition. This realizes transfer method to Speech Recognition System in which voice signal is recorded using Record Tag function of VoiceXML to process voice signal in telephony environment and it is played in real time.

Speech recognition rates and acoustic analyses of English vowels produced by Korean students

  • Yang, Byunggon
    • Phonetics and Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.11-17
    • /
    • 2022
  • English vowels play an important role in verbal communication. However, Korean students tend to experience difficulty pronouncing a certain set of vowels despite extensive education in English. The aim of this study is to apply speech recognition software to evaluate Korean students' pronunciation of English vowels in minimal pair words and then to examine acoustic characteristics of the pairs in order to check their pronunciation problems. Thirty female Korean college students participated in the recording. Speech recognition rates were obtained to examine which English vowels were correctly pronounced. To compare and verify the recognition results, such acoustic analyses as the first and second formant trajectories and durations were also collected using Praat. The results showed an overall recognition rate of 54.7%. Some students incorrectly switched the tense and lax counterparts and produced the same vowel sounds for qualitatively different English vowels. From the acoustic analyses of the vowel formant trajectories, some of these vowel pairs were almost overlapped or exhibited slight acoustic differences at the majority of the measurement points. On the other hand, statistical analyses on the first formant trajectories of the three vowel pairs revealed significant differences throughout the measurement points, a finding that requires further investigation. Durational comparisons revealed a consistent pattern among the vowel pairs. The author concludes that speech recognition and analysis software can be useful to diagnose pronunciation problems of English-language learners.

On Wavelet Transform Based Feature Extraction for Speech Recognition Application

  • Kim, Jae-Gil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.31-37
    • /
    • 1998
  • This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.

  • PDF

Reduction of Environmental Background Noise using Speech and Noise Recognition (음성 및 잡음 인식 알고리즘을 이용한 환경 배경잡음의 제거)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.817-822
    • /
    • 2011
  • This paper first proposes the speech recognition algorithm by detection of the speech and noise sections at each frame using a neural network training by back-propagation algorithm, then proposes the spectral subtraction method which removes the noises at each frame according to detection of the speech and noise sections. In this experiment, the performance of the proposed recognition system was evaluated based on the recognition rate using various speeches that are degraded by white noise and car noise. Moreover, experimental results of the noise reduction by the spectral subtraction method demonstrate using the speech and noise sections detecting by the speech recognition algorithm at each frame. Based on measuring signal-to-noise ratio, experiments confirm that the proposed algorithm is effective for the speech by corrupted the noise using signal-to-noise ratio.

Implementation of Speech Recognition Filtering at Emergency (응급상황에서의 음성인식을 위한 필터기 구현)

  • Cho, Young-Im;Jang, Sung-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.208-213
    • /
    • 2010
  • Generally, the mal factor for speech recognition is the background noise in speech recognition. The noise is the reason to reduce the speech recognition performance. Owing to the fact, the place to recognize is very important. To improve the recognition performance from the sound having noise, we implemented the noise filtered Wiener filter at the signal process step which adopted the FIR filter. In FIR filter, it deal with the filtered speech signal which is appropriate frequency range of human speech frequency range. Therefore, we make the recognition system distinguish between noise and speech sound from the incoming speech signal.

A Study of Automatic Evaluation Platform for Speech Recognition Engine in the Vehicle Environment (자동차 환경내의 음성인식 자동 평가 플랫폼 연구)

  • Lee, Seong-Jae;Kang, Sun-Mee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.538-543
    • /
    • 2012
  • The performance of the speech recognition engine is one of the most critical elements of the in-vehicle speech recognition interface. The objective of this paper is to develop an automated platform for running performance tests on the in-vehicle speech recognition engine. The developed platform comprise of main program, agent program, database management module, and statistical analysis module. A simulation environment for performance tests which mimics the real driving situations was constructed, and it was tested by applying pre-recorded driving noises and a speaker's voice as inputs. As a result, the validity of the results from the speech recognition tests was proved. The users will be able to perform the performance tests for the in-vehicle speech recognition engine effectively through the proposed platform.

Low Cost Circuit Design for a Sentence Speech Recognition (저가의 단 문장 음성 인식회로 설계)

  • 최지혁;홍광석
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.365-368
    • /
    • 2002
  • In this paper, we present a low cost circuit design for a sentence speech recognition. The basic circuit of the designed sentence speech recognizer is composed of resistor, capacitance, OP Amp, counter and logic gates. Through a sentence recognition experiment, we can find the effectiveness of the designed sentence recognition circuit

  • PDF