• Title/Summary/Keyword: 'Mechanical properties'

Search Result 17,312, Processing Time 0.038 seconds

Effect of Annealing Cycle of the Steel Sheet in the Mechanical Properties (박판의 풀림 사이클이 기계적 성질에 미치는 영향)

  • 김순경;이승수;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.69-77
    • /
    • 1998
  • Development on the mechanical properties of steel sheet for the automobile body panel is very important in the BAF(Batch annealing furnace) annealing process. Because of the heat treatment method in the BAF, mechanical properties were decided on the heat treatment method of the coil. So, we tested on the development of mechanical properties according to heat treatment method at the annealing furnace using the In atmospheric gas($H_2$ : 75%, $N_2$ : 25%) and the HNx atmospheric gas($H_2$ : 5%, $N_2$ : 95%) We confirmed the following characteristics, mechanical properties were changed under the influence of the annealing cycle and the atmospheric gas. And, we have some result according to heat treatment method. Elongation of the mechanical properties in the HNx BAF is higher than the Ax BAF. But tensile strength and hardness is higher than the HNx BAF.

  • PDF

Mechanical Properties of the Apple Flesh According to the Specimen Size

  • Kim, M.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • Mechanical properties of the apple flesh were tested with compression test apparatus constructed by this study. The computer program was developed for measuring mechanical properties, and analyzing data obtained from the study. Compression tests on the apple flesh were performed at four levels of specimen diameter, three levels of specimen length, and at constant loading rate(25mm/min). Five replications were made at each treatment combination. Effect of specimen size on the mechanical properties of the apple flesh was investigated.

  • PDF

Influence of Weft's Cotton Count & Weave Construction on the Mechanical Properties & Hand of Cotton Woven Fabrics (위사번수와 조직이 면직물의 역학특성 및 태에 미치는 영향)

  • Bae, Jin-Hwa;Park, Jung-Whan;An, Seung-Kook
    • Fashion & Textile Research Journal
    • /
    • v.7 no.5
    • /
    • pp.553-559
    • /
    • 2005
  • Hand characteristics related with structural properties of fabrics have something to do with mechanical properties of fabric. In this study, the mechanical properties and hand characteristics have been analyzed according to fabric structural parameters such as the weave structure and the linear density of weft of cotton fabric. Mechanical properties have been used by KES-FB system which measures hand characteristics and mechanical properties of fabric. Linear density of weft, tensile, bending, and shear properties are decreasing with increasing weft linear density, and there is no considerable effects on compression and surface properties. In case of formability with weft linear density, B/W, 2HG/G, 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, $\sqrt{2HB/W}$, W/T except MMD/SMD, WC/T, and WC/W have been effected. There is a high correlation between the crimp, tightness, hand, formability and mechanical properties specially tensile linearity, bending, shear, and compression properties. The weft crimp influences the bending rigidity, shear properties, and the tightness which have effects on the tensile linearity, bending, shear, compression properties, hand, and formability.

A Study on the Estimating the Mechanical Properties of Three-Layer Particleboard (3층(層) 파티클보드의 기계적(機械的) 성질(性質) 예측(豫測)에 관(關)한 연구(硏究))

  • Park, Hee-Jun;Lee, Phil-Woo;Chung, Ju-Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Mechanical properties of 15 mm thick, three-layer particleboard were studied by varying resin content, specific gravity, mat moisture content, pressing time and pressing temperature. Based on the results of the study, Multiple regression models were developed to estimate the mechanical properties of three-layer particleboard. The results of this study showed the mechanical properties of particleboard were highly related with resin content. specific gravity and mat moisture content in decending order. The mechanical properties were able to estimated as the linear function of resin content and specific gravity. However, the effects of change in mat moisture content on the mechanical properties showed a non-linear pattern. The mechanical properties curves over mat moisture content reached peaks at 15 %, and then decreased at 18 % and 21 % of mat moisture contents. On the other hand, the effects of pressing time and pressing temperature on the mechanical properties of particleboard were not significant.

  • PDF

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.

Heat-Treated Polyvinyl Alcohol/Cellulose Nanocrystal Film with Improved Mechanical Properties and Water Resistance (내수성 및 기계적 물성이 향상된 열처리된 폴리비닐알코올/셀룰로오스 나노결정 필름)

  • Nguyen, Son Van;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, the water resistance and mechanical properties of heat-treated polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) films were investigated. PVA is the most commonly used synthetic biodegradable polymers owing to its excellent properties. However, the water/moisture sensitivity and relatively poor mechanical properties of PVA limits its applications. Although heat treatment is a conventionally used method to improve the mechanical strength and water resistance of PVA, the effectiveness of this method is insufficient. Therefore, CNC was used to further improve the mechanical properties and water resistance of the heat-treated PVA film. PVA/CNC nanocomposites containing CNC contents of 0, 1, 3, 5, and 10 wt% were fabricated using solvent casting and subsequent heat treatment. The mechanical properties and water resistance of PVA/CNC films were significantly improved. The tensile strength and wet strength of the PVA/CNC film with a CNC content of 5 wt% (PVA/CNC 5%) were 184.5% and 136.0% higher than those of the untreated PVA, respectively. In addition, the water absorption and solubility of PVA/CNC 5% were 56.6% and 68.2% lower than those of the untreated PVA.

Effect of Hydrogen Charging on the Mechanical Properties of 304 Stainless Steels

  • Lee, Sang-Pill;Hwang, Seung-Kuk;Lee, Jin-Kyung;Son, In-Soo;Bae, Dong-Su
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.73-79
    • /
    • 2015
  • The effects of hydrogen charging on the mechanical properties of 304 stainless steels were investigated in conjunction with the detailed examinations of their fracture modes. The dependence of the absorbed impact energy and the surface hardness of the 304 stainless steels on the hydrogen charging time was characterized. The tensile properties of the 304 stainless steels by the variation of cross-head speed were also evaluated at the room temperature. The hydrogen charging was performed by an electrolysis method for all specimens of the 304 stainless steels. The mechanical properties of the 304 stainless steels exhibited the sensitivity of embrittlement due to a hydrogen charging. The correlation between mechanical properties and fracture surfaces was discussed.

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

Evaluation on Mechanical Properties of High Strength Concrete according to the Aggregate Type and after Heating Cooling Conditions (가열 후 냉각조건에 따른 골재 종류별 고강도 콘크리트의 역학적 특성 평가)

  • Yun, Jong-Il;Kim, Gyu-Yong;Nam, Jeong-Soo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Ham, Eun-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.99-100
    • /
    • 2012
  • Aggregate thermal properties and cooling methods are most important to evaluate the residual mechanical properties of concrete. In this study, we evaluate the residual mechanical properties of concrete according to the aggregate type and cooling method. We use the normal weight aggregate and light weight aggregate which have different thermal properties. After heating to the target temperature, we evaluate the mechanical properties according to the slow and fast cooling condition. As a result, normal weight aggregate concrete has higher effectiveness of cooling conditions than light weight aggregate concrete.

  • PDF

Influence of Dilauroyl Peroxide on Mechanical and Thermal Properties of Different Polypropylene Matrices (Dilauroyl Peroxide의 PP에 대한 기계적, 열적 성질 변화)

  • Sirin, Kamil;Yavuz, Mesut;Canli, Murat
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.200-209
    • /
    • 2015
  • In this study, the influence of dilauroyl peroxide on mechanical and thermal properties of different polypropylene (PP) matrices was investigated. Polypropylene matrices, different molecular weight isotactic PP containing 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 wt% of dilauroyl peroxide (DLP) were prepared by using a single-screw extruder. The effect of the visbreaking agent (DLP) on mechanical, physical, thermal and morphological properties of different molecular weight PP had been studied. Mechanical properties (tensile strength at break point, at yield and elongation at break point), melt flow index (MFI), scanning electron microscope (SEM) and differential scanning calorimetric (DSC) analyses of these matrices were examined. Melting ($T_m$) and crystallization ($T_c$) temperatures, crystallinity ratio (%) and enthalpies were determined. The microstructure of isotactic polypropylene matrix was investigated by scanning electron microscopy (SEM). From SEM analysis, it was observed that the surface disorder increased by the increasing amount of DLP. As a result of DSC analyses, the crystallinity ratio of the PP matrices has varied between 1.64-7.27%. Mechanical properties of the matrices have been improved. Particularly, the mechanical tests of PP have given interesting results when compounded with 0.06-0.08 wt% dilauroyl peroxide (DLP). Mechanical properties and thermal decomposition processes were all changed by increasing the amount of DLP in the matrix structure.