• Title/Summary/Keyword: 'Mansu'

Search Result 46, Processing Time 0.021 seconds

Evaluation of Carbon Dioxide Concentrations and Ventilation Rates in Elementary, Middle, and High Schools (초·중·고등학교의 이산화탄소 농도 및 환기량 평가)

  • Choe, Youngtae;Heo, Jung;Park, Jinhyeon;Kim, Eunchae;Ryu, Hyoensu;Kim, Dong Jun;Cho, Mansu;Lee, Chaekwan;Lee, Jongdae;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.3
    • /
    • pp.344-352
    • /
    • 2020
  • Objectives: Much attention has been paid to indoor air quality. Ventilation within schools is important because of indoor air quality and its effect on health and learning performance. In this study, we evaluated the carbon dioxide (CO2) concentrations and ventilation rates in schools. Methods: This study measured the concentration of CO2 in elementary, middle, and high school classrooms over six months. The seasons during the study were summer, fall, and winter. Sensor-based monitoring was used and the basic characteristics of the classroom were investigated. The body surface area of the students was used to calculate the CO2 generation rate, and the air change per hour (ACH) was evaluated using mass balance modeling. Results: The average CO2 concentration measured in most schools exceeded 1000 ppm. The ventilation rates varied from season to season. Compared to the recommended ventilation rate of 4.9 ACH, the roughly 3 ACH calculated in this study indicates that most schools possessed insufficient ventilation. Conclusions: The concentration of CO2 in school classrooms could be an indicator of indoor air quality and can affect students' learning ability. In this study, CO2 concentrations exceeding the standard indicate a lack of ventilation along with problems with indoor air quality. Therefore, appropriate improvements are needed to overcome these problems.

Classification and Characterization of Exposure Rating in Humidifier Disinfectants through Calculation of PHMG Reference Concentration (PHMG (polyhexamethylene guanidine) 흡입독성참고치 산출을 통한 가습기살균제 노출등급 분류 및 특성)

  • Kim, Eunchae;Ryu, Hyeonsu;Park, Jinhyeon;Choe, Youngtae;Heo, Jung;Lee, Seula;Jo, Eun-Kyung;Choi, Yoon-Hyeong;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.3
    • /
    • pp.335-343
    • /
    • 2020
  • Objectives: The Korean Ministry of Environment has identified cases of people suspected of suffering lung disease potentially caused by polyhexamethylene guanidine (PHMG) used in humidifier disinfectants (HDs). Exposure assessment for the HDs was conducted using a questionnaire during face-to-face interview. The main purposes of this study were to develop a methodology to effectively classify levels of exposure to HDs based on a questionnaire. Methods: We first identified the overall participants' exposure characteristics by HD exposure levels; Second, we selected misclassified subjects and investigated characteristics of overestimated and underestimated subjects, focusing on exposure cases to PHMG-containing HDs. An inhalation reference concentration (RfC) for PHMG was produced on the basis of inhalation toxicity values. We made a cross-tabulation of the exposure classes (Exposure classes 1-to-4) by clinical classes based on the RfC. When the value of the exposure class minus the clinical class was 0 or 1, we assumed these were true values. When the value was ≥2 and ≤ -2, we assigned these cases to the overestimation group and underestimation group, respectively. Results: The overestimated group may have already recovered and responded excessively due to psychological anxiety or in order to receive compensation. On the other hand, relatively high mortality rates and surrogate responses for those under 10 years of age may have resulted in inaccurate exposure assessment for underestimated groups. For the characteristics of exposure, it was shown that for the underestimated group, the exposure was relatively weaker than the overestimated group, even though a high overall clinical rating was determined. Conclusions: This study may suggest ways to reduce bias and overcome the limitations of current HD exposure assessment.

Time-activity Pattern Assessment for Korean Students (한국 학생들의 시간활동 양상 평가)

  • Ryu, Hyeonsu;Yoon, Hyojung;Eom, Igchun;Park, Jinhyeon;Kim, Sunshin;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.143-152
    • /
    • 2018
  • Objectives: The purpose of this study was to provide basic data for air pollutant exposure modelling and understanding the contribution of respective microenvironments by assessing the time-activity patterns of Korean students according to variables such as grade, sex, weekday, and weekend. Methods: In this study, we compared the residential time of 521 (both weekday and weekend) lower elementary students, 1,735 (1,054 on weekdays, 681 on weekends) upper elementary students, 2,210 (1,294 on weekdays, 916 on weekends) middle school students, and 2,366 (1,387 on weekdays, 979 on weekends) high school students in different microenvironments according to grade, sex, weekday, and weekend. We used data from the 2014 Time-Use Survey by the Korean National Statistical Office for upper elementary students through high school students, and surveyed time-activity patterns of 521 lower elementary students aged 7-9 years. Each microenvironment was divided into indoor, outdoor, and transport. Indoor environments were divided into home, school, and other places. In addition, the results of previous studies were compared to this study. Results: Weekday time-activity patterns of Korean students indicated that lower elementary students spent $16.02{\pm}2.53hr$ in the home and $5.37{\pm}2.32hr$ in school. Upper elementary students spent $14.11{\pm}1.79hr$ in the home and $6.27{\pm}1.37hr$ in school. Middle school students spent $12.83{\pm}2.22hr$ in the home and $7.48{\pm}1.88hr$ in school. High school students spent $10.65{\pm}2.86hr$ in the home and $10.23{\pm}2.86hr$ in school on weekdays. High school students spent the least amount of time in the home and the most time in school compared to other grades Conclusions: Students spent most of their time indoors, including in the home, school, and other indoors. On weekdays, as the grade increases, home residential times were decreased and school residential times were increased. Differences in time-activity patterns according to sex were not found for either weekdays or weekends. It is estimated that Korean students could be affected by school indoor air quality. High school students could be most affected by school indoor air quality since they spent the most time at school.

Analysis of Chemical Compatibility of Leachates with Liner Materials in the Waste Landfills (폐기물 매립장의 차폐재와 침출 화학성분과의 상호작용 분석)

  • 정하익;장연수
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.49-60
    • /
    • 1993
  • The compatibility of chemicals in the leachates with the three natural and artificially -made liner materials is analyzed by performing the laboratory hydraulic conductivity test. The selected liner materials are natural marine clay, fly ash and weathered granitic soil stomped from Kimpo Wastefills, Seochon power plant and Mansu Dong, Inchon, respectivaly. Bentonites of 20 and 10 percent by weight are used as additive materials for fly ash and weathered granitic soil and the chemical solutions used in the test are acetic acid, methanol, heptane, and aniline which are frequently found in the leachate of waste fills. The concentrations of the chemical solutions are 100% and 75%. The results of the tests show that hydraulic conductivities of the oxter materials are increased by one or two orders of magnitude with permeating pure chemical solutions. The rate of hydraulic conductivity increase is lowest for Seochon fly ash admixed liner and highest for natural marine clay liner. The influence of hydraulic chemical solutions on the liner materials is least for acetic acid and largest for aniline. The increases of conductivity are not shown with the permeation of the solution of concentration 75%. At least by this test results, it can be recognized that the tested liner material can be quite stable with the solutions of significantly high concentration except pure solutions.

  • PDF

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Exposure and Risk Assessment of Benzene and PM10 for Sub-populations using Monte-Carlo Simulations (Monte-Carlo 모의실험을 통한 부분 인구집단별 벤젠 및 PM10의 노출 및 위해성 평가)

  • Park, Jinhyeon;Yang, So Young;Park, Yunkyung;Ryu, Hyeonsu;Kim, Eunchae;Choe, Youngtae;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.247-257
    • /
    • 2019
  • Objectives: The Korea Ministry of Environment regulates concentrations of hazardous air pollutants (HAPs) through Atmosphere Environmental Standards to protect public health from HAPs. However, simply determining the exceedance of HAP concentrations has several limitations and more comprehensive assessment is required. In addition, integrated risk assessment is needed considering exposure in all microenvironments, including outdoor as well as indoor environments. The purpose of this study was to assess the differences in risk by sub-population groups according to time-activity patterns and reported concentrations, as well as the lifetime risk for Koreans. Methods: In this study, we calculated time-weighted average exposure concentrations for benzene and $PM_{10}$ among preschool-age children, students, housewifes, workers, and the elderly using residential time and concentrations for indoor (house, school or workplace, other), outdoor, and transport by the meta-analysis method. The risk assessments were conducted by excess cancer risk and disease death risk using 1,000,000 Monte-Carlo simulations for probabilistic analysis. Results: Preschool-age children, students, housewifes, workers, and the elderly spent 91.9, 86.0, 79.8, 82.2, and 77.3% of their day in their house, workplace, or school, respectively. The more than 99% excess cancer risk for benzene exceed 1.0E-06 in all sub-populations and lifetime. The acute disease death risk for $PM_{10}$ for housewifes and workers for lifetime were 3.35E-04 and 3.18E-04, and chronic disease death risks were 2.84E-03 and 2.70E-03, respectively. Conclusions: The risk of benzene and $PM_{10}$ by sub-population group and for the lifetime of housewifes and workers were assessed. Benzene showed risky results for this study. All disease death risks of $PM_{10}$ were higher than 1.0E-04 and showed different risks by sub-population. This study can be used as a basis for lifetime exposure and risk assessment to benzene and $PM_{10}$.

Exposure and Risk Assessment of Nitrogen Dioxide and Ozone for Sub-population Groups using Monte-Carlo Simulations (Monte-Carlo 모의실험을 통한 부분 인구집단별 이산화질소와 오존의 노출 및 위해성 평가)

  • Park, Jinhyeon;Ryu, Hyeonsu;Yang, So Young;Park, Yunkyung;Heo, Jung;Kim, Eunchae;Choe, Youngtae;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.113-125
    • /
    • 2019
  • Objectives: Although the risk assessments for nitrogen dioxide ($NO_2$) and ozone ($O_3$) have been extensively studied, most of the existing risk assessments were limited mainly to indoor environments such as workplaces, schools, and multi-use facilities. Therefore, integrated risk assessment is needed to consider exposure in all microenvironments, including outdoors. The purpose of this study was to assess the differences in risk among sub-population groups according to time-activity patterns and reported concentrations, as well as the lifetime risk of Koreans. Methods: In this study, we estimated time-weighted average exposure concentrations of $NO_2$ and $O_3$ for preschool children, students, housewives, workers, and seniors using residential time and indoor concentrations (house, school or workplace, other), outdoors, and transport by meta-analysis method. The risk for $NO_2$ and $O_3$ were assessed by hazard quotient using reference concentrations 30 and 60 ppb, respectively. The risk assessments were conducted through 1,000,000 Monte-Carlo simulations for probabilistic analysis. Results: Preschool children, students, housewives, workers, and seniors spent 91.9, 86.0, 79.8, 82.2, and 77.3% of their day in a house, school, or workplace, respectively. The risk assessment for the lifetime of a housewife and a worker showed that 33.8 and 28.4% of hazard quotients of $NO_2$ exceed 1, respectively, and more than 99% of hazard quotient of $O_3$ were less than 1. Conclusions: The risk of $NO_2$ and $O_3$ by sub-population group and for the lifetime of housewives and workers were assessed. The risk for $NO_2$ was higher than for $O_3$ and showed a different risk by sub-population group. Both $NO_2$ and $O_3$ showed a higher risk for housewives than for workers. This study can be used as a basis for lifetime exposure and risk assessment for $NO_2$ and $O_3$.

Estimation of Ventilation Rates in Korean Homes Using Time-activity Patterns and Carbon Dioxide (CO2) Concentration (시간활동양상 및 이산화탄소 농도를 이용한 한국 주택 환기량 추정)

  • Park, Jinhyeon;Ryu, Hyeonsu;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives: The purpose of this study was to estimate the ventilation rate of residential homes in Korea through tracer gas methods using indoor and outdoor concentrations of carbon dioxide ($CO_2$) and $CO_2$ generation rates from breathing. Methods: In this study, we calculated the number of occupants in a home by time through data on the average number of people per household from the Korean National Statistical Office and also measured the amount of $CO_2$ generation by breathing to estimate the indoor $CO_2$ generation rate. To estimate the ventilation rate, several factors such as the $CO_2$ generation rate and average volume of residential house provided by the Korean National Statistical Office, indoor $CO_2$ concentrations measured by sensors, and outdoor $CO_2$ concentrations provided by the Korea Meteorological Administration, were applied to a mass balance model for residential indoor environments. Results: The average number of people were 2.53 per household and Koreans spend 61.0% of their day at home. The $CO_2$ generation rate from breathing was $13.9{\pm}5.3L/h$ during sleep and $15.1{\pm}5.7L/h$ in a sedentary state. Indoor and outdoor $CO_2$ concentrations were 849 ppm and 407 ppm, respectively. The ventilation rate in Korean residential houses calculated by the mass balance model were $42.1m^3/h$ and 0.71 air change per hour. Conclusions: The estimated ventilation rate tended to increase with an increase in the number of occupants. Since sensor devices were used to collect data, sustainable data could be collected to estimate the ventilation rate of Korean residential homes, which enables further studies such as on changes in the ventilation rate by season resulting from the activities of occupants. The results of this study could be used as a basis for exposure and risk assessment modeling.

Entrepreneurship Policy Changes from the Perspective of Policy Paradigm (정책 패러다임 관점에서 살펴본 창업정책 변화)

  • KIM, Mansu;KANG, Jae Won
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.43-58
    • /
    • 2021
  • This study analyzes the entrepreneurship policies of the previous Korean administrations from the perspective of the Policy Paradigm by Hall(1993). A total of 195 newspaper articles and 202 government documents were examined to identify policy paradigm shifts through an analysis of policy objectives, policy instruments, and changing quality of policy instruments by each administration. The first paradigm was built during the 5th and 6th Republic, where 'Support for Small and Medium Enterprise Establishment Act' was enacted in 1986 to promote and support start-ups in the manufacturing sector. Next is the so-called 'people's government' period where 'Act on Special Measures for the Promotion of Venture Businesses' was enacted to tackle the challenges posed during the 1997 Asian financial crisis. A new policy goal was set to promote and nurture venture companies seeking subsequent means to achieve it. The third paradigm shift took place during President Moon's administration in order to effectively respond to the issues stemming from the fourth industrial revolution and the COVID-19 pandemic. Through the overall revision of the 'Support for Small and Medium Enterprise Establishment Act', the scope of startups were expanded, new industries and technology startups were supported and promoted, and venture investment-related laws were streamlined. In addition, the Small and Medium Business Administration was promoted as the Ministry of SMEs and Startups, enabling them to take initiative in implementing startup policies. Particularly, this study focuses on examining the low survival rate of startup companies and the revitalization of private investment as rising policy issues for recent startups, and suggests the improvement direction due to startup policy paradigm shift.

Evaluation of Ventilation Deficiecy in Elementary, Middle, and High Schools using Monte Carlo Simulation (Monte-Carlo 모의실험을 이용한 초·중·고등학교의 환기부족 평가)

  • Choe, Youngtae;Park, Jinhyeon;Kim, Eunchae;Ryu, Hyoensu;Kim, Dong Jun;Min, Kihong;Jung, Dayoung;Woo, Byung Lyul;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.627-635
    • /
    • 2020
  • Objectives: Indoor air quality has become more important aspeople spend most of their times indoors. Since students spend most of their times at home or at school, they are more likely to be exposed to indoor air pollutants. Ventilation in school classrooms can affect health and learning performance. In this study, ventilation deficiency was evaluated in school classrooms using Monte Carlo simulation. Methods: This study used sensor-based monitoring for six months to measure carbon dioxide (CO2) concentrations in classrooms in elementary, middle, and high schools. The volume of the classroom and the number of students were investigated, and the students' body surface area was used to calculate the CO2 emission rate. The distribution of ventilation rates was estimated by measured CO2 concentration and a mass-balance model using Monte Carlo simulation. Results: In the elementary, middle, and high schools, the average CO2 concentrations exceeded 1000 ppm, indicating that the ventilation rates were insufficient. The ventilation rates were deficient from July to August and in December, but showed relatively high ventilation rates in October. Forty-three percent of elementary schools, 56% of middle schools, and 62% of high schools showed insufficient ventilation rates. Conclusions: The ventilation rates calculated in elementary, middle and high schools were found to be quite insufficient. Therefore, proper management is needed to overcome the lack of ventilation and improve air quality.