• Title/Summary/Keyword: 煌

Search Result 5, Processing Time 0.023 seconds

Resistance and Survival of Cronobacter sakazakii under Environmental Stress of Low Temperature (저온 환경에서 Cronobacter sakazakii의 저항과 생존)

  • Kim, Se-Hun;Jang, Sung-Ran;Chung, Hyun-Jung;Bang, Woo-Suk
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • Cronobacter sakazakii has been isolated from a wide range of environmental sources and from several foods of animal and plant origin. The objective of this study was to determine the resistance of C. sakazakii (ATCC 12868, ATCC 29004, and ATCC 29544) in cold, cold-freeze thaw, cold-acid, and cold starvation-freeze thaw stress. The number of C. sakazakii decreased to 1 log CFU/mL at $5^{\circ}C$ (cold storage) for 10 days. When C. sakazakii was cultivated at a low temperature ($13^{\circ}C$), the population of C sakazakii ATCC 12868 and 29004 increased to $10^9$ CFU/mL, and the population of C. sakazakii ATCC 29544 increased to $10^8$ CFU/mL. For C. sakazakii ATCC 12868 and 29004, the cold-adapted cells ($5^{\circ}C$ 24 hr) decreased by 4 log CFU/mL, and the low-temperature-cultivated cells ($13^{\circ}C$) decreased by 0.5 log CFU/mL. In this study, low-temperature cultivation enhanced the freeze-thaw cross-resistance due to the metabolic changes in the cells. Cold stress ($5^{\circ}C$ 48 hr, $13^{\circ}C$ cultivation) enhanced the cold-acid cross-resistance. The cold-starved cells in the sterilized 0.1% peptone water enhanced the freeze-thaw cross-resistance with significant differences (p<0.05). Therefore, the increased tolerance of the cold-adapted or low-temperature-cultivated C. sakazakii cells to freeze-thaw, acid, or starvation suggests that such environments should be considered when processing minimally processed foods or foods with extended shelf life.

The Phenotypic and Genotypic Characterization of Korean Isolates of Cronobacter spp. (Enterobacter sakazakii)

  • Kim, Jung-Beom;Kang, Suk-Ho;Park, Yong-Bae;Choi, Jae-Ho;Park, Sung-Jin;Cho, Seung-Hak;Park, Mi-Sun;Lee, Hae-Kyung;Choi, Na-Jung;Kim, Ha-Na;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.509-514
    • /
    • 2011
  • This study was conducted to investigate the phenotypic and genotypic characteristics of Korean isolates of Cronobacter spp. (Enterobacter sakazakii). A total of 43 Cronobacter spp., including 5 clinical isolates, 34 food isolates, 2 environmental isolates, and 2 reference strains (C. sakazakii ATCC 29004 and C. muytjensii ATCC51329) were used in this study. Korean isolates of Cronobacter spp. were divided into 11 biogroups according to their biochemical profiles and 3 genomic groups based on the analysis of their 16S rRNA gene sequences. Biogroups 1 and 2 contained the majority of isolates (n=26), most of which were contained in 16S rRNA cluster 1 (n=34). Korean isolates of Cronobacter spp. showed diverse biochemical profiles. Biogroup 1 contained C. sakazakii GIHE (Gyeonggido Research Institute of Health and Environment) 1 and 2, which were isolated from babies that exhibited symptoms of Cronobacter spp. infection such as gastroenteritis, sepsis, and meningitis. Our finding revealed that Biogroup 1, C. sakazakii, is more prevalent and may be a more pathogenic biogroup than other biogroups, but the pathogenic biogroup was not represented clearly among the 11 biogroups tested in this study. Thus, all biogroups of Cronobacter spp. were recognized as pathogenic bacteria, and the absence of Cronobacter spp. in infant foods should be constantly regulated to prevent food poisoning and infection caused by Cronobacter spp.

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang;Kim, Sung Ok;Jin, Cheng-Yun;Kim, Gi-Young;Kim, Wun-Jae;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.184-192
    • /
    • 2014
  • ${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

Multiple Confirmation and RAPD-genotyping of Enterobacter sakazakii Isolated from Sunsik (선식에서 분리한 Enterobacter sakazakii의 복합동정 및 RAPD를 이용한 genotyping)

  • Choi, Jae-Won;Kim, Yun-Ji;Lee, Jong-Kyung;Kim, Young-Ho;Kwon, Ki-Sung;Hwang, In-Gyun;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • Enterobacter sakazakii is implicated in severe forms of neonatal infections such as meningitis and sepsis. This organism has been isolated from a wide range of foods, including cheese, vegetables, grains, herbs, and spices, but its primary environment is still unknown. Generally, dried infant milk formula has been epidemiologically identified as the source of E. sakazakii. Sunsik (a powdered mixture of roasted grains and other foodstuffs) is widely consumed in Korea as a side dish or energy supplement. Sunsik is consumed without heat treatment; thus, lacking an additional opportunity to inactivate foodborne pathogens. Therefore, its microbiological safety should be guaranteed. In this study, the prevalence of E. sakazakii was monitored in 23 different sunsik component flours, using FDA recommended methods; but E. sakazakii medium (Neogen) and Chromogenic E. sakazakii medium (Oxoid) were used as the selective media. In total, presumptive E. sakazakii strains were isolated from 8 different sunsik powders. Subsequently, an API 20E test was conducted, and 15 strains from 5 different sunsik flours (sea tangle, brown rice, non-glutinous rice, cheonggukjang, dried anchovy) were confirmed as E. sakazakii. Fifteen strains were again confirmed by PCR amplification, using three different primer sets (tDNA sequence, ITS sequence, 16S rRNA sequence), and compared to ATCC strains (12868, 29004, 29544, 51329). They were once again confirmed by their enzyme production profiles using an API ZYM kit. Finally, RAPD (random amplified polymorphic DNA)-genotyping was carried out as a monitoring tool to determine the contamination route of E. sakazakii during processing.

Differences among Major Rice Cultivars in Tensile Strength and Shattering of Grains during Ripening and Field Loss of Grains (벼알의 인장강도 및 탈립성의 등숙중 변화와 품종간 차이 및 포장손실과의 관계)

  • Y. W. Kwon;J. C. Shin;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • Degree of grain shattering which is of varietal character is an important determinant for the magnitude of field loss of grains during harvest and threshing. Seven Indica \times Japonica progeny varieties and four Japonica varieties were subjected to measurements of tensile strength of grains, degree of grain shattering when panicles were dropped at 1.5m above concrete floor, and moisture content of grains (wet basis) during a period 35 to 63 days after heading. In addition, two varieties were tested for the relation of tensile strength of grains to the magnitude of field loss of grains in actual binder harvest. The 11 varieties differed conspicuously in tensile strength of grains and the degree of grain shattering: the weakest average tensile strength of grains of a variety was about 90g and the strongest about 250g with varying standard deviation of 30 to 60g. Three Indica \times Japonica varieties and one Japonica variety shattered I to 30% of the grains under the falling test. The threshold tensile strength of grains allowing grain shattering was estimated to be 180g on average for a sampling unit of 10 panicles, but only the grains having tensile strength weaker than 98g within the samples shattered. A decrease in average tensile strength by 10g below the threshold value corresponded to an increase of 3 to 5% in grain shattering. Most varieties did not change appreciably the tensile strength of grains and degree of grain shattering with delay in time of harvest and showed a negative correlation between the tensile strength and the moisture content of grains. The average tensile strength of grains was negatively correlated linearly with field loss in binder harvest. The average tensile strength for zero field loss in binder harvest was estimated to be 174g and a decrease in the average tensile strength by 10g corresponded to an increase of 40kg per hectare in field loss of grains. Instead of the average tensile strength of grains, the percentage of grains having tensile strength weaker than 100g is recommended as a criterion for the estimation of field loss of grains during harvesting operations as well as a basis of variety classification for grain shattering, since the standard deviation of tensile strength of grains varies much with variety and time of harvest, and individual grains having tensile strength stronger than 98 did not shatter practically.

  • PDF