• Title/Summary/Keyword: %MVC contraction

Search Result 77, Processing Time 0.028 seconds

The Effects of Massage and Stretching on Muscle Contraction Force for Muscle Fatigue Caused by Isometric Contraction (등척성수축으로 근피로 유발 후 스트레칭과 마사지가 근수축력 회복에 미치는 영향)

  • Lee, Jong-Dae;Bae, Jun-Ho;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.53-64
    • /
    • 2006
  • Purpose: The present study purposed to examine the effects of massage and stretching on the recovery of muscle contraction force for muscle fatigue caused by sustained isometric contraction. Methods: The subjects of this study Were 64 healthy men and women (women: 30, men: 34). They Were divided into massage group (23), stretching group (21) and rest group (20), and using Biodex System we observed the pattern of changes in maximal voluntary contraction force (MVC) after causing muscle fatigue in quadriceps femoris muscle through sustained isometric contraction. Results: We measured the point of fatigue occurrence by sustained isometric contraction with 50% MVC and changes in isometric contraction force at 0, 10, 20 and 30 minutes after fatigue and compared them according to gender and treatment group. Conclusion: 1. According to the result of measuring the point of time when fatigue occurred, a difference was observed in time to task failure between men and women. It was significantly longer in women. 2. By gender, MVC changed significantly in all time frames in women, but it showed significant increases only at 10 minutes after fatigue in men. 3. In the comparison of MVC among the treatment groups, it showed significant differences among the groups at 10 minutes after fatigue. 4. In the comparison of changes in MVC among the time frames for each group, the rest group showed significant differences in MVC between 0 and 10 minutes after fatigue and between 20 and 30 minutes after fatigue. The massage group showed significant differences in MVC between 0 and 10 minutes after fatigue and between 10 and 20 minutes after fatigue. The stretching group showed a significant difference in MVC between 10 and 20 minutes after fatigue and between 20 and 30 minutes after fatigue.

  • PDF

Quantitative Analysis of EMG Amplitude Estimator for Surface EMG Signal Recorded during Isometric Constant Voluntary Contraction (등척성 일정 자의 수축 시에 기록한 표면근전도 신호에 대한 근전도 진폭 추정기의 정량적 분석)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.843-850
    • /
    • 2017
  • The EMG amplitude estimator, which has been investigated as an indicator of muscle force, is utilized as the control input to artificial prosthetic limbs. This paper describes an application of the optimal EMG amplitude estimator to the surface EMG signals recorded during constant isometric %MVC (maximum voluntary contraction) for 30 seconds and reports on assessing performance of the amplitude estimator from the application. Surface EMG signals, a total of 198 signals, were recorded from biceps brachii muscle over the range of 20-80%MVC isometric contraction. To examine the estimator performance, a SNR(signal-to-noise ratio) was computed from each amplitude estimate. The results of the study indicate that ARV(average rectified value) and RMS(root mean square) amplitude estimation with forth order whitening filter and 250[ms] moving average window length are optimal and showed the mean SNR improvement of about 50%, 40% and 20% for each 20%MVC, 50%MVC and 80%MVC surface EMG signals, respectively.

Reproducibility analysis of surface EMG spike variables during isometric voluntary contraction of the biceps brachii muscle (이두박근의 등척성 자의 수축시 표면근전도 신호에서 검출한 스파이크 변수들의 재현성 분석)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1246-1254
    • /
    • 2009
  • The reproducibility of initial value and change over time of surface EMG spike variables(MSA, MSF, MSS, MSD) was investigated in the biceps brachii muscle of 11 healthy subjects. Surface EMG signals were recorded during sustained isometric voluntary contractions for 30 seconds at three contraction levels, 20%, 50%, and 80%MVC, respectively. Each contraction was repeated three times in each of three different days for a total of nine contractions and 99 contractions per %MVC level across the eleven subjects. A total of 297 EMG signals across the different trials, days, subjects, and %MVC levels was saved for the subsequent analysis. The degree of reproducibility was investigated using the intraclass correlation coefficient(ICC) and the standard error of the mean(SEM) based upon the analysis of variance(ANOVA), Results for intercept showed higher reproducibility of the spike variables with about 60%-98% ICC than the variable(ARV, MNF) which had been analyzed before in other researches. And results for slope showed poor reproducibility of the spike variables with about 30%-70% ICC and they were comparable with the variables of other researches.

Effects of two different isometric contraction methods on recovery form fatigue and on the recruitment pattern of muscles of both arms (두 근 수축 방법이 피로 회복율과 근육 동원 방법에 미치는 영향에 관한 연구)

  • 변승남;정윤태
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.9-23
    • /
    • 1995
  • The objectives of the study were twofole: (1) to investigate effects of rhythmic contraction and sustained contraction methods on recovery rate of isometric endurance capacity and (2) to compare aptterns of muscle recruitment of both arms observed during each contraction period. In the experiment, each of two subjects performed five successive rhythmic or sustained isometric contractions at 50% MVC with both arms to the point of fatigue, which was the failure to maintain the required tension. In making the contractions, the subjects stood erect with upper arms held at an angle of approximately 90 .deg. to the forearm. The interval between the successive contractions was kept constant at 3, 7, 20, or 40 minutes. Regardless of the contraction methods, the recovery rate was least at the shortest interval and was highest at the longest interval. However, a statistical analysis showed that the recovery rates for the rhythmic contractions were significantly lower than those for the sustained contractions throughout 4 different intervals. Furthermore, as the frequency of the rhythmic contractions per min, increased 4 to 6 times, the recovery rate of isometric endurance capacity decreased. From an EMG anglysis, recruitment pattern of the muscules of both arms was found to be common between two different contraction methods. The biceps muxcles of the upper arms played a major role in exerting 50% MVC, while the brachioradialis muscles of the forearms acted as synergists. As the contraction proceeded, the role of the biceps muscles as a prime mover lessened due to the fatigue. Then, the brachioradialis muscles exerted more strength to sustain 50% MVC. The implications of these finding were discussed.

  • PDF

Effects of hand vibration on involuntary muscle contraction

  • 박희석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.394-398
    • /
    • 1994
  • The aim of the present study was to determine the influence of vibration frequency and muscle contraction level at constant vibration displacement amplitudes on a commonly observed motor response elicited by local vibratory stimulation, i.e., the Tonic Vibration Reflex (TVR). Vibration was applied to the distal tendons of the hand flexor muscles. Changes in activity of the hand flexor and extensor muscles were analyzed as a function of the vibration frequency (40-200 Hz), displacement amplitude(200.mu.m and 300.mu.m peak-to-peak), and the initial contraction level of the flexor muscles (0%, 10%, and 20% of the maximal voluntary contraction: MVC). The main results indicate that the TVR increases with vibration frequency up to 100-150 Hz and decreases beyond, and the TVR attains its maximum at 10% MVC. It appears that high frequency vibration tends to induce less muscle/tendon stress. Such a result is of particular importance for the design of handheld vibrating tools.

A Study on the Electromyography Change for Analysis of rectus femoris muscle stiffness with muscle fatigues (근피로에 의한 하지 대퇴직근의 경직도 분석을 위한 근전도 변화에 관한 연구)

  • Lee, Gyoun-Jung;Nam, Jea-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2317-2323
    • /
    • 2010
  • When the muscle is contracted by continuous and same, the force takes fatigue and stiffness. The aim of this study was to know how the fatigue and muscle stiffness change during an isometric contraction. Surface Electro myography(EMG) signal monitoring system and ultrasonic transducer set up the same muscle stem, subjects contract his right femoris muscle by submaximal isometric contraction(50% of MVC) until exhaustion. Before and after the test, muscle stiffness was measured and EMG was measured during the contraction. As time goes by, muscle fatigue was increased. and the stiffness was shown strongly after the contraction. These results show if the muscle becomes more and more fatigued, the circulation of muscle is delayed although the contraction doesn't happen. So muscle stiffness is increased.

Spike Variable Analysis of Surface EMG Signal During Constant Voluntary Contraction (일정한 자의 수축 시 표면 근전도 신호에 대한 Spike 변수 해석)

  • Yang, Hee-Won;Joung, Eui-Kon;Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.809-816
    • /
    • 2007
  • This paper presents an analysis of the SEMG signal quantitatively and automatically using spike variables : MSF, MSA, MSS, and MSD. The SEMG signals were recorded in three muscle parts, first dorsal interosseus, biceps brachii and abductor policis brevis, from 14 normal subjects. Emphasis was placed on the following 3 points in the experiments. 1) Suggest proper window length to estimate the spike variables 2) Investigate variation of the spike variables to varying %MVC. 3) Investigate variation of the spike variables to the sustained contraction for 30 minutes. Quantitative results were showed and examined in point of practical clinical application.

Effect of Trunk Flexion and Low Extremity Posture on Maximum Holding Time (허리굽힘과 다리자세가 작업지속시간에 미치는 영향에 관한 연구)

  • Lee, Se-Jung;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.69-74
    • /
    • 2011
  • Despite most of tasks in manufacturing, construction and agriculture, etc., were currently mechanized and automated, manual materials handling still existed in atypical working condition. In case of manual materials handling, repetitive work, inappropriate working posture, excessive force, contact stress might cause overload, which could lead to work-related musculoskeletal disorders and low back pains. On this basis, the goal of this study is to reveal the effects of various lifting postures of trunk angles and lower extremity postures on maximum holding time(MHT). Twenty two subjects were recruited from a university population. The experiment was designed by a combination of three trunk angle ($0^{\circ}$, $20^{\circ}$, $60^{\circ}$) and three lower extremity postures(straight, bent, kneeling). Before experimental trials, subjects performed MVC(maximum voluntary contraction) exertions in three trunk angles ($0^{\circ}$, $20^{\circ}$, $60^{\circ}$) to calculate 30%MVC at designated postures. In each trial, they were required to hold the handheld load(30%MVC) for a designated posture as long as they could. The results of MVC by trunk angles were measured in $0^{\circ}$ > $20^{\circ}$ > $60^{\circ}$ orders, but those of MHT measured in $20^{\circ}$ > $0^{\circ}$ > $60^{\circ}$ orders. These results showed that straight posture is the ideal working posture in work exerted a strong force for a short time, but the ability to work might be improved in the trunk angle $20^{\circ}$ in work required 30%MVC for a long time. Also, results of MVC and MHT by lower extremity postures measured in straight > bent > kneeling orders.

A Comparison of EMG Amplitude between the Biceps Brachii and the Quadriceps Femoris Muscles in Static Exertions (상완이두근과 대퇴사두근의 등장성 수축에 대한 EMG Amplitude의 비교${\cdot}$분석)

  • Lee, Koo-Hyung;Lee, Nyun-Woo
    • Journal of the military operations research society of Korea
    • /
    • v.8 no.1
    • /
    • pp.77-98
    • /
    • 1982
  • Experiments have been performed for estimating the individual muscle capabilities of the biceps brachii and the quadriceps femoris muscle. The surface EMG has been recorded on the bellies of the biceps brachii and the quadriceps femoris muscle during isometric contractions at $50\%,\;75\%,\;and\;100\%$ MVC. The rectified EMG amplitudes of the maximum voluntary contraction (MVC) were in the range of $2.8\~3.0\;mV\;and\;6.9\~7.2\;mV$ the biceps brachii and the quadriceps femoris, respectively. In the biceps brachii, Type S motor units were recruited in the range of $41\~49\%$ MVC; and Type F motor units were recruited in the range of $51\~59\%$ MVC, In the quadriceps femoris, Type S, Type SF, and Type F motor units were recruited in the ranges of $31\~38\%,\;33\~48\%$, and $21\~29\%$ MVC respectively.

  • PDF

Measurement of Shoulder Muscle Workload at Various Working Postures (작업자세에 따른 어깨근육의 작업부하 측정)

  • Kim, Jung-Yong;Park, Ji-Soo;Park, Chang-Soon;Phyun, Heung-Kook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.266-273
    • /
    • 1999
  • The maximum work capacity at various shoulder angles was estimated in terms of joint moment through maximum voluntary contraction (MVC) measurement, and the result was compared to workload computed from 3-D static lifting model (3DSSPP) based upon national institute of safety and health (NIOSH) lifting guideline (1991). The electromyography (EMG) of anterior/posterior deltoid and trapezius muscle was also recorded to study the function of individual muscle during asymmetric shoulder lifting. Psychophysical workload was measured to observe the difference from MVC or biomechanical estimation. An apparatus was constructed for the study and twenty five trials including five flexion angles and five add/abduction angles were performed isometrically. Results indicated that MVC at 30 degree of flexion was the strongest whereas MVC at 120 degree was the weakest. In case of add/abduction, MVC decreased to 77 to 89 % during add/abduction compared to the MVC at neutral position. Regarding the normalized EMG value, a substantial increase was observed at 30 and 60 degree abduction. More importantly, the shoulder moment computed from maximum permissible limit (MPL) was greater than the moment at MVC condition during 30 degree adduction. Current result can be used as a reference information for a safe workplace design to prevent the shoulder from an excessive work load in industry.

  • PDF