• Title/Summary/Keyword: %24CO_2%24 concentration

Search Result 573, Processing Time 0.029 seconds

Bioequivalence Evaluation of Two Atenolol Tablet Preparations in Korean Healthy Male Volunteers

  • Gwak, Hye-Sun;Chun, In-Koo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • This study was conducted to compare the bioavailability of two brands of atenolol (50 mg) tablets, which are a generic product of $Ditent^{\circledR}$ (Daewon Pharmaceutical Co., Ltd., Korea) and an innovator product $Tenormin^{\circledR}$ (Hyundai Pharm. Ind. Co., Ltd., Korea), in 20 healthy Korean male volunteers. The volunteers received a single 50 mg dose of each atenolol formulation according to a randomized, two-way cross-over design. The washout period between treatments was 1 week. Plasma samples were obtained over a 24-hour interval, and atenolol concentrations were determined by HPLC with a fluorescence detector. From the plasma atenolol concentration vs. time curves, the following parameters were compared: area under the plasma concentration-time curve ($AUC_{0-24}$), peak plasma concentration ($C_{max}$), time to reach peak plasma concentration ($T_{max}$), and terminal first order elimination half-life ($t_{1/2}$). No statistically significant difference was obtained between the $T_{max}$ values, and the logarithmic transformed $AUC_{0-24}$ and $C_{max}$ values of the two products. The 90% confidence interval for the ratio of the logarithmically transformed AUC and $C_{max}$ values of $Ditent^{\circledR}$ over those of $Tenormin^{\circledR}$ were calculated to be between 0.85 and 1.04, and 0.89 and 1.07, respectively; both were within the bioequivalence limit of 0.80-1.25. The mean of $T_{max}$ in $Tenormin^{\circledR}$ group was 3.1 hour, and that in Ditent$^{\circledR}$ group was 3.2 hour. The values of $t_{1/2}$ between the two products were found comparable, and the mean values were 5.2 hour in the both products. Based on these results, it was concluded that $Ditent^{\circledR}$ was comparable to $Tenormin^{\circledR}$ in both the rate and extent of absorption, indicating that $Ditent^{\circledR}$ was bioequivalent to the reference product, $Tenormin^{\circledR}$.

Investigation on Conservation Environment of the Seokguram Grotto (National Treasure No. 24) (국보 제24호 석굴암의 보존환경)

  • Hong, Jung-Ki;Eom, Doo-Sung
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.169-184
    • /
    • 2003
  • Yearly mean temperature and relative-humidity of the Seokguram Grotto was measured $19~23^{\circ}C$, 40~44% from May, 1998 to December,2002. The measurement has little differences comparing to the optimum guideline (temperature : $20^{\circ}\pm2^{\circ}C$, relative-humidity : $50^{\circ}\pm5%$). It is necessary to increase humidity in the Seokguram Grotto during winter because of heating and decrease the temperature during summer because of a higher temperature of outside. In addition, the diurnal range keep in $4^{\circ}C$ of temperature and in 10% of relative-humidity. Yearly mean concentration of $CO_2$(carbon dioxide) was measured538~658ppm that is higher than concentration of normal atmosphere(360 ppm). The $CO_2$ has an cumulative effect on the surface of stone cultural properties as a form of carbonic acid($H_2CO_3$) after reaction with water. HVAC (Heating, Ventilation and Air Conditioning) system should be operated to maintain ideal state for the preservation according to the optimum guideline. Also, the entrance into the Seokguram Grotto should be controlled to prevent a sudden fluctuation of humidity and temperature. Human could carry small particles like a microdust, microbe, etc., into the Seokguram Grotto and also could damage the surface by a direct touch.

  • PDF

Effect of CO2 Concentration and Fertilization Time on the Growth of Potted Phalaenopsis (CO2 처리농도 및 공급시간이 분화 호접란의 생육에 미치는 영향)

  • Hwang, Seung Jae;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • The study was conducted to examine effective concentration and fertilization time of $CO_2$ for the growth of potted Phalaenopsis in growth chambers. Enrichment level of $CO_2$ was 1,000 or $2,000{\mu}mol{\cdot}mol^{-1}$ and fertilization time was 06:00~12:00, 00:00~06:00, or 18:00~24:00. Two, seven, or twelve month-old clonal micropropagules of Phalaenopsis cultivars were cultured for 99 days. Leaf number, leaf length, leaf width, root length and fresh weight of all Phalaenopsis cultivars in $2,000{\mu}mol{\cdot}mol^{-1}$ $CO_2$ were significantly greater than that of $1,000{\mu}mol{\cdot}mol^{-1}\;CO_2$. $CO_2$ fertilization time was the greatest growth in 0:00~06:00.

Effects of the Crude Saponin Extracted from Ginseng Leaves on the Physiological Properties of Microorganisms (Part 1) Effects on Saccharomyces cerevisiae (인삼엽에서 추출한 Crude Saponin이 미생물의 생리에 미치는 영향 (제1보) Saccharomyces cerevisiae에 미치는 영향)

  • 양희천;이태규
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.123-128
    • /
    • 1981
  • The effects of the crude saponin extracted from ginseng leaves on carbon dioxide evolution, alcohol fermentation, and cell production by Saccharomyces cerevisiae were investigated. The results were summarized as follows : 1) In the process of fermentation, $CO_2$ evolution by yeast was faster in the order of 3%, 1.5%, 0.7%, 5%, 7%, 0.3% than in control in concentration of the crude saponin extracts. 2) In the course of fermentation, the content of alcohol increased in the order of 0%, 0.3%, 7%, 1.5%, 3%, 5%. Among all these concentration, the production of alcohol was remarkably much in 5% and 3%. 3) In the process of fermentation, pH in the low content (0-0.7%) of the crude saponin extracts was gradually decreased as tine goes by and in the high content (1.5-7%) dropped suddenly between 24 hrs. and 48 hrs., and after 48 hrs., increased. 4) Dried yeast cell weight increased more in all the above concentration than control (0%) and among these it increased visibly in 3%.

  • PDF

Ferromagnetic Resonance of Amorphous $Co_{1-\chi}Hf_\chi$ Thin Films (비정질 $Co_{1-x}Hf_x$ 박막의 강자성 공명)

  • 백종성;김약연;이성재;임우영;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.129-133
    • /
    • 1997
  • To investigate the influence of the Hf concentration and the annealing effect in $Co_{1-x}Hf_x$(X=0.16, 0.24 at.%) systems, ferromagnetic resonance experiments have been carried out. Spin wave resonance spectra for all samples consist of several volume modes and one (or two) surface mode. It is suggested that both surfaces of the film have a perpendicular hard axis to the film plane (negative surface anisotropy). The surface anisotropy $K_{s2}$ at substrate-film interface is varied slowly from -0.07 to -0.32 erg/$\textrm{cm}^2$ and the surface anisotropy $K_{s1}$ at film-air interface is varied from 0.18 to -0.47 erg/ $\textrm{cm}^2$ with increasing annealing temperature in the amorphous $Co_{84}Hf_{16}$ thin films. Also, the surface anisotropy $K_{s2}$ is varied slowly from -0.31 to -0.41 erg/$\textrm{cm}^2$ and the surface anisotropy $K_{s1}$is varied from -0.19 to -0.60 erg/$\textrm{cm}^2$ with increasing annealing temperature in the amporphous $Co_{84}Hf_{16}$ thin films. We conjecture that the variation of surface anisotropy $K_{s1}$ is due to the increase of Co concentration resulted from Hf oxidation for low temperature annealing(150~175 $^{\circ}C$) and the diffusion of Co atoms near the film surfaces for high temperature annealing (200~225 $^{\circ}C$).

  • PDF

Influence of Increased Carbon Dioxide Concentration on the Bioluminescence and Cell Density of Marine Bacteria Vibrio fischeri (이산화탄소 농도 증가에 따른 발광미생물의 상대발광량과 밀도변화에 대한 연구)

  • Sung, Chan-Gyoung;Moom, Seong-Dae;Kim, Hye-Jin;Choi, Tae-Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • An experiment was conducted to evaluate the biologically adverse effect of increased carbon dioxide in seawater on marine bacteria, Vibrio fischeri. We measured the bioluminescence and cell density at every 6 hours for 24 hours of the whole incubation period after exposing test microbes to a range of $CO_2$ concentration such as 380(Control), 1,000, 3,000, 10,000 and 30,000 ppm, respectively. Significant effect on relative luminescence(RLU) of V. fischeri was observed in treatments with $CO_2$ concentration higher than 3,000 ppm at t=12 h. However, the difference of RLU among treatments significantly decreased with the incubation time until t=24 h. Similar trend was observed for the variation of cell density, which was measured as optical density using spectrophotometer. The results showed that a significant relationship between $CO_2$ concentration and bioluminescence of test microbes was observed for the mean time. However, the inhibition of relative bioluminescence and also cell density could be recovered at the concentration levels higher than 3,000 ppm. The dissolved $CO_2$ can be absorbed directly by cell and it can decrease the intracellular pH. Our results implied that microbes might be adversely affected at the initial growing phase by increased $CO_2$. However, they could adapt by increasing ion transport including bicarbonate and then could make their pH back to normal level. Results of this study could be supported to understand the possible influence on marine bacteria by atmospheric increase of $CO_2$ in near future and also by released $CO_2$ during the marine $CO_2$ sequestration activity.

Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis (NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향)

  • Oh, Taekyun;Kwon, Sejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.

Nitrogen Dioxide Measurement with Diffusive Passive Samplers at the Curbside Points in Daejeon (확산측정기를 이용한 대전시 도로변에서의 이산화질소 측정)

  • Yim, Bong-Been;Kim, Sun-Tae;Yang, Heung-Mo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.143-152
    • /
    • 2008
  • This study investigates the variation and spatial distribution of nitrogen dioxide($NO_2$) concentrations measured with passive diffusive samplers at 40 curbside points in Daejeon. Average $NO_2$ concentration was $39.8{\pm}18.0\;ppb$ (n=1,127) and the significant difference in concentrations by regional groups (Dong-gu, Jung-gu, Seo-gu, Daedeok-gu, Yuseong-gu) was not observed. The frequency distribution of $NO_2$ concentration was found to be a normal distribution with the high frequency in the concentration range of 30 to 40 ppb (20 to 25%). Average $NO_2$ concentration measured during the rainy periods was lower than that measured during the non-rainy periods and the decrease of concentration by rainfall was about 16% (7 ppb). The variation of $NO_2$ concentrations measured by passive diffusive samplers during the sampling period was similar to that continuously measured at the air quality monitoring station.

Variations of Trace Gases Concentrations and Their Relationship with the Air Mass Characteristic at Gosan, Korea (제주도 고산에서의 미량기체 농도변화와 공기괴 특성과의 관계)

  • Kim, In-Ae;Li, Shan-Lan;Kim, Kyung-Ryul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.584-593
    • /
    • 2008
  • The surface $O_3,\;CO,\;NO_x,\;and\;SO_2$ were measured at Gosan in Jeju Island from May 2004 to April 2005. Over this period, the mean concentrations $({\pm}s.d.)$ of each gas was 40.06 $({\pm}16.01)$ ppbv for $O_3,\;264.92({\pm}115.73)ppbv\;for\;CO,\;1.98({\pm}2.73)ppbv\;for\;SO)_2,\;and\;4.64 ({\pm}3.24) ppbv\;for\;NO_x$. The monthly variations and the diurnal variations of these gases show that the Gosan site is situated in a relatively clean region. However, there were episodic simultaneous peaks in CO and $SO_2$, especially in winter and early spring. Using cluster analysis with air mass back- ward trajectory analysis, we suggest that these episodes are due to the influence of transportation of polluted air mass from polluted regions. In the cluster, which was under the dominant influence of clean maritime air mass, low levels of $O_3,\;CO,\;and\;SO_2$ were observed. The levels of these species were elevated in the other two clusters which had the air mass influenced by polluted continental regions. In addition, ratios of the chemical species such as $CO/NO_x,\;SO_2/NO_x,\;and\;CO/SO_2$ revealed the somewhat different characteristics of emission sources influencing each cluster. The differences in concentration of trace gases among clusters with different origin and transport pathways imply that Gosan is under the effect of pollution transported from other regions.

Impact of Climate Change on Yield and Canopy Photosynthesis of Soybean (RCP 8.5 기후변화 조건에서 콩의 군락 광합성 및 수량 반응 평가)

  • Wan-Gyu, Sang;Jae-Kyeong, Baek;Dongwon, Kwon;Jung-Il, Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2022
  • Changes in air temperature, CO2 concentration and precipitation due to climate change are expected to have a significant impact on soybean productivity. This study was conducted to evaluate the climate change impact on growth and development of determinate soybean cultivar in the southern parts of Korea. The high temperature during vegetative period, which does not accompany the increase of CO2 concentration, increased the canopy photosynthetic rate in soybean, but after flowering, the high temperature above the optimal ranges interrupts the photosynthetic metabolism. In yield and yield components, high temperature reduced both the pod and seed number and single seed weight, resulting in a reduction of total seed yield. On the other hand, the increase in CO2 concentration dramatically increased the canopy photosynthetic rate over the whole growth period. In addition, high CO2 concentration increased the number of pods and seeds, which had a positive effect on total seed yield. Under concurrent elevation of air temperature and CO2 concentration, canopy photosynthesis increased significantly, but enhanced canopy photosynthesis did not lead to an increase in soybean seed yield. The increase in biomass and branch by enhanced canopy photosynthesis seems to be attributed to an increase in the total number of pods and seeds per plant, which compensates for the negative effects of high temperature on pod development. However, Single seed weight tended to decrease rapidly by high temperature, regardless of CO2 concentration level. Elevated CO2 concentration did not compensate for the poor distribution of assimilations from source to sink caused by high temperature. These results show that the damage of future soybean yield and quality is closely related to high temperature stress during seed filling period.