• Title/Summary/Keyword: %24CO_2%24 Emission

Search Result 151, Processing Time 0.025 seconds

Efficiency Evaluation of a Hybrid Propulsion Fuel Cell Ship Based on AIS Data (항적 데이터에 기반한 하이브리드 추진 연료전지 선박의 효율 평가)

  • Donghyun Oh;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.146-154
    • /
    • 2023
  • Efforts have been made to reduce the greenhouse gas emissions from ships by limiting the energy efficiency index, and net zero CO2 emission was proposed recently. The most ideal measure to achieve zero emission ship is electrification, and fuel cells are considered as a practical power source of the electrified propulsion system. The electric efficiency in the electrochemical reaction of fuel cells can be achieved up to 60% practically. The remaining energy is converted to heat energy but most of them are dissipated by cooling. In the author's previous research, a hybrid propulsion system utilizing not only electricity but also heat was introduced by combining electric motor and steam turbine. In this article, long term efficiency is evaluated for the introduced hybrid propulsion system by considering a virtual 24,000 TEU class container carrier model. To reflect a more practical operating condition, the actual navigation data of a similar real ship in the real world were collected from automatic identification system data and applied. From the result, the overall efficiency of the hybrid propulsion system is expected to be higher than a conventional electric propulsion fuel cell ship by 30%.

Development of Traffic Volume Estimation System in Main and Branch Roads to Estimate Greenhouse Gas Emissions in Road Transportation Category (도로수송부문 온실가스 배출량 산정을 위한 간선 및 지선도로상의 교통량 추정시스템 개발)

  • Kim, Ki-Dong;Lee, Tae-Jung;Jung, Won-Seok;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.233-248
    • /
    • 2012
  • The national emission from energy sector accounted for 84.7% of all domestic emissions in 2007. Of the energy-use emissions, the emission from mobile source as one of key categories accounted for 19.4% and further the road transport emission occupied the most dominant portion in the category. The road transport emissions can be estimated on the basis of either the fuel consumed (Tier 1) or the distance travelled by the vehicle types and road types (higher Tiers). The latter approach must be suitable for simultaneously estimating $CO_2$, $CH_4$, and $N_2O$ emissions in local administrative districts. The objective of this study was to estimate 31 municipal GHG emissions from road transportation in Gyeonggi Province, Korea. In 2008, the municipalities were consisted of 2,014 towns expressed as Dong and Ri, the smallest administrative district unit. Since mobile sources are moving across other city and province borders, the emission estimated by fuel sold is in fact impossible to ensure consistency between neighbouring cities and provinces. On the other hand, the emission estimated by distance travelled is also impossible to acquire key activity data such as traffic volume, vehicle type and model, and road type in small towns. To solve the problem, we applied a hierarchical cluster analysis to separate town-by-town road patterns (clusters) based on a priori activity information including traffic volume, population, area, and branch road length obtained from small 151 towns. After identifying 10 road patterns, a rule building expert system was developed by visual basic application (VBA) to assort various unknown road patterns into one of 10 known patterns. The expert system was self-verified with original reference information and then objects in each homogeneous pattern were used to regress traffic volume based on the variables of population, area, and branch road length. The program was then applied to assign all the unknown towns into a known pattern and to automatically estimate traffic volumes by regression equations for each town. Further VKT (vehicle kilometer travelled) for each vehicle type in each town was calculated to be mapped by GIS (geological information system) and road transport emission on the corresponding road section was estimated by multiplying emission factors for each vehicle type. Finally all emissions from local branch roads in Gyeonggi Province could be estimated by summing up emissions from 1,902 towns where road information was registered. As a result of the study, the GHG average emission rate by the branch road transport was 6,101 kilotons of $CO_2$ equivalent per year (kt-$CO_2$ Eq/yr) and the total emissions from both main and branch roads was 24,152 kt-$CO_2$ Eq/yr in Gyeonggi Province. The ratio of branch roads emission to the total was 0.28 in 2008.

Exhaust Gas Emission and Particulate Matter (PM) from Gasoline, LPG and Diesel Vehicle Using Different Engine Oil (가솔린, LPG, 디젤 차량에서 윤활유에 따른 배출가스 및 입자상물질)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Woo, Youngmin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Lee, Minseob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2016
  • This study effect of engine oils on regulated fuel economy and emissions including particulate matter (PM) to provide basic data for management of engine oil in vehicles. Three engine oils (Group III base oil, Group III genuine oil with additive package and synthetic oil with poly alpha olefins (PAOs)) were used in one gasoline, one LPG(liquefied petroleum gas) and two diesel vehicles. In the case of diesel vehicles, one is a diesel vehicle without DPF (diesel particulate filter) other is a diesel vehicle with DPF. In this study, the US EPA emission test cycle FTP-75, representing city driving, was used. HORIBA, PIERBURG, and AVL gas analyzers were used to measure the fuel economy and regulated emissions such as CO, NOx, and THC. The number of PM was measured using a PPS (pegasor particle sensor). And, the shape of PMs was analyzed by SEM (scanning electron microscope). The effects of oil type on fuel economy, exhaust gas, and PM were not significant because engine oil consumption by evaporation and combustion in the cylinder is very tiny. Fuel and vehicle type were dominant factors in fuel economy and emissions. HC emission from gasoline vehicles was higher than that from other vehicles and NOx emission from diesel vehicles was higher than that from other vehicles. The number of PM was not affected by the engine oil, but by the driving pattern and fuel. The shapes of the PM, sampled from each vehicle using any test engine oil, were similar.

Effect of Dietary Supplementation of Garlic and May Flower Powder on CO2 and CH4 Emission by Hanwoo Cow (산사 및 마늘 분말이 한우암소의 이산화탄소 및 메탄 발생량에 미치는 영향)

  • Kim, Du Ri;Ha, Jae Jung;Song, Young Han
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.363-368
    • /
    • 2012
  • This study was conducted to investigate the effects of dietary garlic and may flower powder on $CO_2$ and $CH_4$ emission by Hanwoo cows fed TMR (Total Mixed Ration) based diet. Animals were housed in a hood-type respiration chamber and the environmental temperature was maintained at $20^{\circ}C$. Gases were measured for 24 hours using the multi-detector instrument gas monitoring system (Mamos-300, Australia). The treatments composed of groups with no intake of garlic and may flower powder (Control), with intake of garlic at 0.5% of DM (T1), with intake of garlic at 1% of DM (T2), with intake of may flower at 0.5% of DM (T3), with intake of may flower at 1% of DM (T4), with intake of garlic and may flower at 0.5% of DM (T5) and with intake of garlic and may flower at 1% of DM (T6). The results indicated that $CO_2$ emission in T3 was 53% lower than that of control (p<0.05), and $CH_4$ emissions was 57% lower than control (p<0.05). Also, the hourly pattern of $CO_2$ and $CH_4$ emissions in T3 showed the least difference with all treatments. Gas emissions pattern peaked after 1 hour of feeding and this gap was wider in the afternoon than in the morning hours.

PERFORMANCE NEEDS OF TOMORROW'S DRIVELINE LUBRICANTS

  • Hong, Hyun-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.21-24
    • /
    • 2002
  • There is a trend with driveline lubricants toward improved thermal stability, vehicle component durability and fuel efficiency. These improvements can significantly reduce vehicle operating costs and improve customer satisfaction. Of these improvements, the fuel efficiency is getting a substantial attention due to recent focus on $CO_2$ emission control in Europe, Japan and $CAF{\'{E}}$ requirement in U.S.A. Lower viscosity axle oils and transmission fluids are currently being evaluated as potential solutions since these lubricants tend to reduce the churning losses and can improve the fuel efficiency. However, these lubricants should provide adequate gear and bearing protection, while increasing the overall efficiency of the driveline components. In this paper, the development of new fuel efficient axle was discussed with the focus on the effect of base oils, additives, and viscosity modifiers on the fuel efficiency of driveline components.

  • PDF

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

Unlocking the Future of a Prosperous Green Globe: With a Focus on the G-20 STI Summit

  • Choi, Young-sik
    • STI Policy Review
    • /
    • v.1 no.3
    • /
    • pp.17-24
    • /
    • 2010
  • Energy consumption is the largest contributing factor for the increase of $CO_2$ emissions and amounts for almost 85% of all emissions. The future energy consumption of Korea is projected to grow exponentially despite its heavy dependence on imported energy that represents 97% of its total energy supply. According to a recent OECD report the carbon emission level of Korea is currently ranked 9th in $CO_2$ emissions, and is growing by almost 3% every year. Against this background, the Korean government introduced the "low carbon green growth" policy in 2008. As the global challenges intensified in the wake of the world economic crisis, Korea has been working hard in raising the visibility of its efforts at the club governance meetings, in particular the G-20 summit. Because of cooperative efforts with major member countries, the G-20 summit agenda has been significantly diversified to include long-term issues such as climate change, development issues, and global health. To achieve an effective green recovery for a new green world economic order, the G-20 summit leaders should concentrate on a strategy of establishing green governance for a global STI cooperation. Korea as the host country is poised to leverage the Seoul G-20 summit to catalyze global efforts toward a new green economic order.

Optical annealing of doped ZnS nanoparticles through UV irradiation (UV 조사에 의한 doped ZnS 나노입자의 annealing 효과)

  • Lee, Jun-Woo;Cho, Kyoung-Ah;Kim, Hyun-Suk;Kim, Jin-Hyoung;Park, Byung-Jun;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.24-27
    • /
    • 2004
  • ZnS nanoparticles were synthesized and doped with $Pr^{3+}\;and\;Mn^{2+}$. Photoluminescence(PL) peaks were observed at 430 nm for pure ZnS, 585 nm for $Mn^{2+}-doped$ ZnS, and at around 430, 460, 480, 495 nm for ZnS nanoparticles doped with $Pr^{3+}$, respectively. For co-doped sample, both characteristics of doping with each element were exhibited. Optical annealing through UV irradiation was carried out in the two atmospheres; air and vacuum. The increases of the luminescence intensity was more considerable in the air, which is attributed to the photo-induced oxidation. In the case of co-doped sample the change of the emission color was observed by UV annealing.

  • PDF

Carbon emissions monitoring of angling boat for the largehead hairtail (Trichiurus lepturus) (갈치 채낚기어선의 온실가스 배출량 모니터링)

  • Euna YOON;Geunchang PARK;Yong Beom PYEON;Wooseok OH;Kyounghoon LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This study examined the power consumption of angling boats during entry, departure, and fishing operations using a black box-type storage device. Through this analysis, it determined the energy consumption and carbon emissions of small fishing boats used for catching the largehead hairtail. The energy consumption and carbon emissions were calculated using formulas provided by the Korea Energy Agency, which incorporated updated emission coefficients from 2022. The findings revealed that the average power consumption of small fishing boats for the largehead hairtail was 546.3 kWh, with a total energy consumption of 0.1164 TOE and carbon emissions of 24.057 CO2. The average energy consumption was calculated at 0.0006 TOE per kilogram, and the carbon emissions were determined to be 0.135 CO2/kg.

A Study on the Comparison of Areas Near Gunsan according to the Revision of the National Air Pollutant Emissions (CAPSS) in 2020 (국가대기오염물질 배출량(CAPSS)의 2020년 산정 방법 개정에 따른 군산 인근지역 비교에 관한 연구)

  • Sang-Hun Park;Seong-Cheon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.190-200
    • /
    • 2023
  • Background: Gunsan has been constantly affected by pollutants generated by the Saemangeum development and the construction industry since the completion of the Saemangeum seawall on April 27, 2010. However, there are limitations to its study, such as taking into consideration weather conditions, geographical factors, and foreign inflows. Objectives: In this study, we compared the Existing-CAPSS emissions of Gunsan with Recalculated-CAPSS emissions data to analyze the differences in emissions characteristics by year (2016~2019). Methods: Using Existing data on CAPSS emissions (2016~2019) and Recalculated-CAPSS emissions (2016~2019) for Gunsan, which were Recalculated following the improvement of emissions calculations for 2020, we organized CO, NOX, SOX, PM10, VOCS, and NH3 emissions by substance and investigated the differences and characteristics of the Recalculated emissions by year. Results: For Re-CO and Re-PM10, the emission characteristics of CO were examined as energy industry combustion and PM10 emission characteristics were examined as ship cargo from non-road transportation sources, as ship leisure sources were excluded from non-road transportation source emissions. Conclusions: Comparing the emissions of Existing-CAPSS and Recalculated-CAPSS in Gunsan, the emissions of Recalculated-CAPSS by substance decreased by 39.76% for CO, 9.98% for PM10, 5.53% for VOCS, and 9.24% for NH3, while Re-NOX increased by 2.86% and Re-SOX increased by 1.97%. On the other hand, when comparing the emissions characteristics of Existing-CAPSS and Recalculated-CAPSS in Gunsan, Jeonju, and Iksan, the emission characteristics of Re-NOX, Re-SOX, Re-VOCS and Re-NH3 were similar to those of Ex-NOX, Ex-SOX, Ex-VOCS, and Ex-NH3. As such, Gunsan, Iksan, and Jeonju, showed differences in the comparison of different emission characteristics due to the geographical characteristics of the region (population, area, topography, weather factors) and the characteristics of the industrial complex (metal, petrochemical).