• Title/Summary/Keyword: $s{\gamma}$-sets

Search Result 33, Processing Time 0.018 seconds

Mössbauer Studies of the Magnetic Properties in Ba-ferrite Single Crystal (Ba-Ferrite 단결정의 자기적 특성에 관한 뫼스바우어 분광학적 연구)

  • Sur, J.C.;Gee, S.H.;Hong, Y.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.60-64
    • /
    • 2007
  • Ba-Ferrite single crystals were prepared and characterized by X-ray, SEM and Mossbauer spectroscopy. The single crystal layers was cut in the c-axis and radiated to the surface by ${\gamma}-rays$ for Mossbauer spectroscopy. We found out that the spin states in Fe atoms were parallel to the ${\gamma}-rays$ direction. The temperature dependence of the hyperfine field is almost similar to that of powder samples. The crystal structure is a Magnetoplumbite without any other phases and the lattice parameters are found out with $a_0=5.892{\AA},\;b_0=5.892{\AA},\;c_0=23.198{\AA}$. $M\"{o}ssbauer$ spectrum in single crystal have 5 sets off absorption lines in each Fe site when the ${\gamma}-rays$ have the same radiation direction with the c-axis in the crystal, which mean that the whole crystal bulk formed only one crystal and same spin direction. The hysteresis curve shows the saturation moment and coercive force of 70.71 emu/g and 320 Oe respectively.

GIS-based Data-driven Geological Data Integration using Fuzzy Logic: Theory and Application (퍼지 이론을 이용한 GIS기반 자료유도형 지질자료 통합의 이론과 응용)

  • ;;Chang-Jo F. Chung
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.243-255
    • /
    • 2003
  • The mathematical models for GIS-based spatial data integration have been developed for geological applications such as mineral potential mapping or landslide susceptibility analysis. Among various models, the effectiveness of fuzzy logic based integration of multiple sets of geological data is investigated and discussed. Unlike a traditional target-driven fuzzy integration approach, we propose a data-driven approach that is derived from statistical relationships between the integration target and related spatial geological data. The proposed approach consists of four analytical steps; data representation, fuzzy combination, defuzzification and validation. For data representation, the fuzzy membership functions based on the likelihood ratio functions are proposed. To integrate them, the fuzzy inference network is designed that can combine a variety of different fuzzy operators. Defuzzification is carried out to effectively visualize the relative possibility levels from the integrated results. Finally, a validation approach based on the spatial partitioning of integration targets is proposed to quantitatively compare various fuzzy integration maps and obtain a meaningful interpretation with respect to future events. The effectiveness and some suggestions of the schemes proposed here are illustrated by describing a case study for landslide susceptibility analysis. The case study demonstrates that the proposed schemes can effectively identify areas that are susceptible to landslides and ${\gamma}$ operator shows the better prediction power than the results using max and min operators from the validation procedure.

EEG based Cognitive Load Measurement for e-learning Application (이러닝 적용을 위한 뇌파기반 인지부하 측정)

  • Kim, Jun;Song, Ki-Sang
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.2
    • /
    • pp.125-154
    • /
    • 2009
  • This paper describes the possibility of human physiological data, especially brain-wave activity, to detect cognitive overload, a phenomenon that may occur while learner uses an e-learning system. If it is found that cognitive overload to be detectable, providing appropriate feedback to learners may be possible. To illustrate the possibility, while engaging in cognitive activities, cognitive load levels were measured by EEG (electroencephalogram) to seek detection of cognitive overload. The task given to learner was a computerized listening and recall test designed to measure working memory capacity, and the test had four progressively increasing degrees of difficulty. Eight male, right-handed, university students were asked to answer 4 sets of tests and each test took from 61 seconds to 198 seconds. A correction ratio was then calculated and EEG results analyzed. The correction ratio of listening and recall tests were 84.5%, 90.6%, 62.5% and 56.3% respectively, and the degree of difficulty had statistical significance. The data highlighted learner cognitive overload on test level of 3 and 4, the higher level tests. Second, the SEF-95% value was greater on test3 and 4 than on tests 1 and 2 indicating that tests 3 and 4 imposed greater cognitive load on participants. Third, the relative power of EEG gamma wave rapidly increased on the 3rd and $4^{th}$ test, and signals from channel F3, F4, C4, F7, and F8 showed statistically significance. These five channels are surrounding the brain's Broca area, and from a brain mapping analysis it was found that F8, right-half of the brain area, was activated relative to the degree of difficulty. Lastly, cross relation analysis showed greater increasing in synchronization at test3 and $4^{th}$ at test1 and 2. From these findings, it is possible to measure brain cognitive load level and cognitive over load via brain activity, which may provide atimely feedback scheme for e-learning systems.

  • PDF