• Title/Summary/Keyword: $bla_{OXA-23-like}$

Search Result 3, Processing Time 0.018 seconds

An Analysis of the Antibiotic Resistance Genes of Multi-Drug Resistant (MDR) Acinetobacter baumannii (다제내성 Acinetobacter baumannii 의 항생제 내성 유전자 분석)

  • Lim, Jina;Lee, Gyusang;Choi, Yeonim;Kim, Jongbae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • Acinetobacter baumannii (A. baumannii) is prevalent in hospital environments and is an important opportunistic pathogen of nosocomial infection. It is known that this pathogen cause herd infection in hospitals, and the mortality rate is remarkably higher for patients infected with this pathogen and already have other underlying diseases. Herein, we investigated the antibiotic resistance rate and the type of resistance genes in 85 isolates of multi-drug resistant A. baumannii from the samples commissioned to laboratory medicine in two university hospitals-in hospital A and hospital B-located in Cheonan and Chungcheong provinces, respectively, in Korea. As a result, $bla_{OXA-23-like}$ and $bla_{OXA-51-like}$ were detected in 82 stains (96.5%). These 82 strains of $bla_{OXA-23-like}$ producing A. baumannii were confirmed with the ISAba1 gene found at the top of the $bla_{OXA-23-like}$ genes by PCR, inducing the resistance against carbapenemase. The armA, AME gene that induces the resistance against aminoglycoside was detected in 34 strains out of 38 strains from Hospital A (89.5%), and in 40 strains out of 47 strains from Hospital B (85.1%), while AMEs were found in 33 strains out of 38 strains from Hospital A (70.2%) and in 44 strains out of 47 strains in Hospital B (93.6%). Therefore, it was found that most multi-drug resistant A. baumannii from the Cheonan area expressed both acethyltransferase and adenyltransferase. This study investigated the multi-drug resistant A. baumannii isolated from Cheonan and Chungcheong provinces in Korea, and it is thought that the results of the study can be utilized as the basic information to cure multi-drug resistant A. baumannii infections and to prevent the spread of drug resistance.

Patterns of Antimicrobial Resistance and Genotyping of Carbapenemase-producing Imipenem-nonsusceptible Pseudomonas aeruginosa (Imipenem 비감수성 Carbapenemase 생성 Pseudomonas aeruginosa에 의한 항생제 내성유형과 분자생물학적인 특성)

  • Lee, Jin-Hee;Lee, Gyusang;Lim, Kwanhun;Eom, Yong-Bin;Kim, Shin-Moo;Kim, Jong-Bae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.2
    • /
    • pp.71-80
    • /
    • 2010
  • Pseudomonas aeruginosa are important nosocomial pathogens. Their resistance to carbapenem is increasing and causing concerns in Korea. An increasing prevalence of carbapenem resistance mediated by acquired carbapenemase is being reported. Over a 10 month-period from July 2007 to April 2008, 32 strains of imipenem-nonsusceptible P. auruginosa were isolated from Kangwon National University Hospital. To determine the prevalence and genotypes of the carbapenemase-producing clinical isolates, the antibiotic susceptibility was determined by Microscan Walkaway 96 SI System and the carbapenem activity was detected by the modified Hodge test and the imipenem-EDTA-SMA double-disk synergy test. The metallo-${\beta}$-lactamase gene and OXA-type ${\beta}$-lactamase gene reported in Korea were detected by PCR. As for the result of PCR, 30 isolates of P. aeruginosa were found to have $bla_{IMP-1}$-like and 1 isolate was found to have $bla_{IMP-1}$-like and $bla_{IMP-2}$. No clinical isolates were found to have $bla_{SIM-1}$, $bla_{OXA-23}$-like and $bla_{OXA-24}$-like. Random amplified polymorphic DNA (RAPD)-PCR and dendrogram for genetical similarity to band patterns of each clinical isolates were examined. P. aeruginosa were grouped into 7 clusters of up to 50% of similarity index. In the P. aeruginosa group, PS3 was resistant to the most antibiotics, PS1 was susceptible to the most antibiotics. PS7 was resistant to aztreonam unlike other groups. This is the first report of prevalence of carbapenemase in Chuncheon.

  • PDF

Prevalence of Multi-drug Resistant Acinetobacter baumannii Producing OXA-23-like from a University Hospital in Gangwon Province, Korea

  • Jang, In-Ho;Lee, Gyu-Sang;Choi, Il;Uh, Young;Kim, Sa-Hyun;Park, Min;Woo, Hyun-Jun;Choi, Yeon-Im;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.79-82
    • /
    • 2012
  • Acinetobacter infections are of great concern in clinical settings because of multi-drug resistance (MDR) and high mortality of the infected patients. The MDR Acinetobacter baumannii has emerged as a significant infectious agent in hospitals worldwide. The purpose of this study was to determine for molecular characterization of MDR A. baumannii clinical isolates obtained from the Wonju Christian Hospital in Gangwon province of Korea. A total of seventy nonduplicate A. baumannii isolates were collected from the Wonju Christian Hospital in Korea from March to April in 2011. All of the MDR A. baumannii isolates were encoded by $bla_{OXA-23-like}$ gene and all isolates with the $bla_{OXA-23-like}$ gene had the upstream element ISAba1 to promote increased gene expression and subsequent resistance to carbapenem. 16S rRNA methylase gene (armA) was detected in 44 clinical isolates which were resistant to amikacin, and phosphotransferase genes encoding aac(3)-Ia and aac(6')-Ib were the most prevalent. A combination of 16S rRNA methylase and aminoglycoside-modifying enzyme genes (armA, aac(3)-Ia, aac(6')-Ib, and aph(3')-Ia) were found in 31 isolates. The sequencing results for the quinolone resistance-determining region (QRDR) of gyrA and parC revealed the presence of Ser (TCA) 83 Leu (TTA) and Ser (TCG) 80 Leu (TTG) substitutions in the respective enzymes for all MDR. Molecular typing for MDR A. baumannii could be helpful in confirming the identification of a common source or cross-contamination. This is an important step in enabling epidemiological tracing of these strains.