• Title/Summary/Keyword: $_{}$ L/-lysine

Search Result 494, Processing Time 0.031 seconds

PROTEIN SPARING EFFECT AND AMINO ACID DIGESTIBILITIES OF SUPPLEMENTAL LYSINE AND METHIONINE IN WEANLING PIGS

  • Han, I.K.;Heo, K.N.;Shin, I.S.;Lee, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.4
    • /
    • pp.393-402
    • /
    • 1995
  • Experiments were conducted to evaluate the nutritive values of supplemental L-lysine, liquid and powder type, and DL-methionine in weanling pigs. For feeding trial, 165 weanling pigs were treated in 2 controls; 18 and 16% CP, 6 supplementations of lysine alone to 16% CP diets; 0.1, 0.2 and 0.4% of liquid and powder type each, and 3 supplementations of lysine + methionine to 15% CP diets; 0.05 + 0.025, 0.1 + 0.05 and 0.2 + 0.1%. Pigs were fed for 5 week to investigate the protein sparing effect of supplemental amino acid, and the optimal supplemental level. A metabolic trial included the measurements of digestibilities of dry matter, crude protein, crude fat, crude fiber, energy, phosphorus and amino acids. The liver acinar cell culture was conducted for the protein synthesis activity of the pigs fed each experimental diet. Supplementation of both type of L-lysine in 16% CP diet showed improved daily weight gain and feed efficiency which were compatible with those of pigs fed 18% CP diet. Groups fed liquid lysine did not differ from those fed powder type in growth performance. Supplementation of lysine and methionine to 15% CP diet did not improve growth performance of pigs to the extent that 18% CP diet was fed. In nutrient digestibility, 16% CP control diet showed significantly (p < 0.05) lower crude protein digestibility than any other treatments. Digestibilities of 16% CP diets with lysine supplementation were equal to that of 18% CP control, while digestibilities of 15% CP diets with the supplementation of lysine + methionine was inferior to that of 18% CP control. Supplementation of lysine alone reduced the nitrogen excretion compared to the none supplemented control groups. However, addition of lysine + methionine excreted more nitrogen than controls. Pigs fed diet supplemented with lysine alone, or lysine + methionine excreted less fecal phosphorus than those fed none supplemetation. Retained protein from liver tissue of pigs fed 18% diet was significantly (p < 0.05) greater than those fed 16% CP diet. A significant difference (p < 0.05) was observed in physical type of lysine. Feeding of powder type showed less secreted protein and greater retained protein in the culture of liver acinar cell. It is concluded that supplementation of lysine at the level of 0.1 to 0.2% can spare 2% of dietary protein and reduce nitrogen excretion by 19.3%. Also, no difference in nutritional values was observed between liquid and powder lysine in weanling pigs.

A Putative Peptide Synthetase from Bacillus subtilis 713 Recognizing $_{L}-Lysine,{\;}_{L}-Tryptophan,{\;}and{\;}_{L}-Glutamic$ Acid

  • Kim, Kyoung-Rok;Lee, In-Hyung;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.798-803
    • /
    • 2001
  • Peptide synthetases produced from various microorganisms are multifunctional enzyme complexes and their substrates are recognized and activated by adenylation domains. To identify the substrate specificity of the peptide synthetase isolated from Bacillus subtilis 713, known to produce an antifungal peptide, two adenylation domains containing the minimal functional portion were expressed and purified. ATP-ppi exchange experiments and kinetic studies revealed that the two adenylation enzymes had a substrate specificity to $_{L}-lysine{\;}and{\;}_{L}-tryptophan$, respectively. In addition, based on a signature sequence comparison, the substrate of the third domain was predicted to be L-glutamic acid. These results suggest that this peptide synthetase is novel because there has been no previous report on a peptide synthetase that uses $_{L}-lysine,{\;}_{L}-tryptophan,{\;}and{\;}_{L}-glutamic$ acid as substrates in that order.

  • PDF

Studies on Intergeneric Protoplast fusion and L-Lysine Productivity

  • 이인선;조정일
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.1
    • /
    • pp.93-99
    • /
    • 1995
  • For the improvement of the L-lysine productivity of Brevibacterium flavum and Corynebacterium glutamicum, fusants were induced by interspecific protoplast fusion of Bacillus subtilis with C. glutamicum and B. flavum. The following results were obtained through protoplast formation of strains condition of protoplast fusion, characteristics of the fusants, and the productivity of lysine form starch. B. flavum BF-5 and C. glutamicum protoplasts were made by the treatment of 0.3unit/$m\ell$ of penicillin G at the early stationary growth phase for 2 hours followed by incubation with 10mg/$m\ell$ of lysozyme at 37$^{\circ}C$ for 120 min. When a mixture of the protoplast was treated with 30% PEG(M.W.6,000) solution containing 50mM CaCl2 at optimal conditions, the intergeneric fusion frequency between protoplasts of C. glutamicum CG-2 and B. subtilis BD 224 was 7.1${\times}$105. The genetic properties on the L-lysine producing fusants were compared with those of parental strains. As a results, the intergeneric fusants were completed in each auxotrophic requirement, resistances for S-(2-amino-ethyl)-L-cysteine and kanamycine were confirmed. And one of fusants selected, FBB-41 were found to be genetically stable fusants. The aspartokinase activity of FBB-41 strain increased than that of the parent strain.

  • PDF

Interaction of ${\varepsilon}-L-{\beta}-lysine$ as a Tail Analogy of Tallysomycin-A to a Double Helical DNA Oligonucletide $d(CGCTTCGAAGCG)_{2}$, was investigated by NMR

  • Lee, Chang-Jun;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.129-137
    • /
    • 2007
  • During the screening of material which has the antimicrobial activity against aminoglycoside-resistant bacteria, A new material ${\varepsilon}-(L-{\beta}-lysine)$ polypeptide from a culture medium of Streptomyces sp.(DWGS2) was isolated, and the structure and the physicochemical properties of the new material were elucidated. The new material was separated by column chromatography of the culture medium using Dowex $1{\times}2$, Silica gel, and Sephadex LH20 etc. The structure and molecular weight were determined with the data of NMR, MALDI mass, and ESI mass experiments. And the monomer obtained by hydrolysis of the new material with 6N-HCI was identified as a $L-{\beta}-lysine(T_2)$, which is a tail of bleomycin. As tail-region analogy, $T_2({\beta}-lysine$ derivatives from streptomyces) interactions with a self-complementary oligonucleotides, $d(CGCTTCGAAGCG)_2$, was investigated by NMR.

  • PDF

PROTEIN SPARING EFFECT AND AMINO ACID UTILIZATION IN BROILERS FED TWO TYPES OF LYSINE

  • Heo, K.N.;Han, I.K.;Lee, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.4
    • /
    • pp.403-409
    • /
    • 1995
  • A growth experiment was conducted to evaluate the nutritivie values of supplemental lysine and methionine in broiler chicks. Two types of L-lysine, liquid and powder type, and DL-methionine were added to the diets at different levels of dietary protein with two growth phases, 0-3 weeks and 4-6 weeks named starter and grower, respectively. Six hundred seventy two chicks were allotted in 14 treatments; 3 controls by dietary CP level (starter-grower) with CP 23-21%, CP 21-19% and CP 20-18, 8 groups of liquid and powder lysine supplementation of 0.1, 0.2, 0.3 and 0.4%, and 3 groups of lysine and methionine supplementation. Body weight, feed intake, and excreta were measured and analyzed to determine growth performance, amino acid digestibilities, and the quantity of excreted nitrogen in feces. Chicks fed CP 23-20 with 3,200 ME kcal showed significantly better growth performance than those fed CP 21-18 for 6 weeks. The supplementation of 0.2% of either type of lysine to CP 21-19 diet improved weight gain and feed efficiecy to the extent that CP 23-21 diet was fed. Physical type of lysine did not affect chick's growth and amino acid digestibilities of the diets. The level of CP in the diet significantly affected nitrogen excretion in feces. Supplementation of lysine and methionine to CP 21-18 diet reduced fecal nitrogen by 10% compared to CP 23-21 diet. It was confirmed that 0.2% of supplemental lysine to the broiler diet spared the dietary protein by 3%, and also reduced nitrogen excretion in feces by 10%.

Efficient Production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus Using One-Stage pH Control Fed-Batch Fermentation Coupled with Nutrient Feeding

  • Liu, Sheng-Rong;Wu, Qing-Ping;Zhang, Ju-Mei;Mo, Shu-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.358-365
    • /
    • 2015
  • ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the epsilon amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.

Studies on the Characterization of Carboxyl Proteinase in Poria cocos (복령의 Carboxyl Proteinase의 분리 정제 및 그 성질에 관한 연구(II))

  • Min, Tae-Jin;Park, Sang-Shin;Moon, Soon-Ku
    • The Korean Journal of Mycology
    • /
    • v.14 no.2
    • /
    • pp.101-107
    • /
    • 1986
  • The properties of carboxyl proteinase which was contained in Poria cocos (Schw.) Wolf were investigated by means of the purification with 0.65 ammonium sulfate saturation, DEAE cellulose and Sephadex G-75 gel filtration. This enzyme was found to hydrolyze only peptide bond between glutamyl-L-tyrosine of carbobenzoxy-L-glutamyl-L-tyrosine among the synthetic substrates of carbobenzoxy-L-glutamyl-L-tyrosine, hippuryl- L-phenylalanine and hippuryl-L-arginine. This enzyme was inhibited by $Zn^{+2},\;Fe^{+2},\;Ca^{+2},\;CN^{-1},\;P_2O_7^{-4}$ ions, but stimulated by $Hg^{+2}$ ion. Also, this enzyme was inhibited by organic compounds such as L-lysine, L-phenylalanine, hippuryl-L-phenylalanine, diazoacetyl-DL-norleucine methyl ester (DAN) and 1,2-epoxy-3-(P-nitrophenoxy)propane(EPNP). In particular, the activity was inhibited by L-lysine till 20 minutes of preincubation time rapidly, and by DAN in the presence of $Cu^{+2}$ ion more rapidly after 30 minutes than DAN in the absence of $Cu^{+2}$ ion. L-Lysine was found to be a competitive inhibitor and its $K_i$ value was determined to be 0.12 mmole by Dixon plot.

  • PDF

Development of L-Lysine Producing Strains by Intergeneric Protoplast Fusion of Brevibacterium flavum and Corynebacterium glutamicum (Brevibacterium flavum과 Corynebacterium glutamicum의 이속간 원형질체 융합에 의한 L-라이신 생산균주 개발)

  • Kyung, Ki-Cheon;Lim, Bun-Sam;Lee, Se-Yong;Chun, Moon-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.279-283
    • /
    • 1985
  • As a method of breeding L-lysine producing strains, the intergeneric protoplast fusion between Brevibacterium flavum and Corynebacterium glutamicum was performed. As a results, Brevibacterium flavum ATCC 21528 R showed 99% of protoplast formation and 10% of regeneration frequencies when treated with 400$\mu\textrm{g}$/$m\ell$ of lysozyme for 12hrs. In Corynebacterium glutamicum ATCC 21514 S, 99% and 12% were obtained by treatment of 300$\mu\textrm{g}$/$m\ell$ lysozyme for 12 hrs. In intergeneric protoplast fusion between Brevibacterium flavum ATCC 21528 R and Corynebacterium glutamicum ATCC 21831 S, 1.0$\times$10$^{-6}$ of recombinant frequency per regenerable cells was observed by use of PEG 6000, 30%(w/v). Among the strains obtained KR$_{43}$ strain showed 12% higher productivity of L-lysine than the parental cell. Then, the activity of aspartokinase of KR$_{43}$ was about 13% higher than the parental cell.

  • PDF

Improvement of L-Lysine Productivity by Using Cell Fusion and Immobilized System (세포융합과 고정화 시스템을 이용한 L-Lysine의 생산성 향상)

  • Ryu, Beung-Ho;Kim, Hye-Sung;Roh, Myung-Hoon;Park, Bob-Gyu;Chung, Jong-Soon;Bai, Ki-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.154-163
    • /
    • 1989
  • This studies were designed to improve the productivity of L-lysine by protoplast fusion and immobilized system of fusants using strains of Brevibacterium flavum ATCC 21528, Brevibacterium lactofermentum ATCC 21086 and Corynebacterium glutamicum 820. Mutants were isolated with concentration method of $300{\mu}g/ml$ penicillin-G after treatment of $250{\mu}g/ml$ N-methyl-N-nitro-N-nitrosoguanidine. B. flavum $37-2(Hos^-,\;Kan^r,\;AEC^r)$, B. lactofermentum $6-2(Ile^-,\;Val^-,\;Str^r,\;AEC^r)$ and C. glutamicum 57-5$(Met^-,\;Thr^-,\;Rif^r,\;AEC^r)$ were isolated from mutants. Protoplasts were induced by being incubated with $500{\mu}g/ml$ lysozyme of lysis solution for 6 hr and the ratio of protoplast formation and regeneration were ranging from 97-99% and 33-37%, respectively. Fusion frequencies of fusants of BBFL 21, BCFG 37 and BCLG 59 were shown in the range from $1.25{\times}10^{-6}\;to\;5.83{\times}10^{-7}$ under the optimum conditions. The fusant BBFL 21 showed the highest productivity of $411.1\;ng/ml{\cdot}hr$ L-lysine in the lysine productivity broth at $30^{\circ}C$ for 72hr. In the immobilization systems, fusant BBFL 21 was employed in various polymer matrices such as sodium alginate, polyacrylamide, agar and ${\alpha}-carrageena$. The immobilization of sodium alginate showed the highest productivity of $413\;ng/ml{\cdot}hr$ L-lysine in the batch system. Continuous fermentation of immobilization system by using tube fermentor was produced the highest productivity $416.7\;ng/ml{\cdot}hr $ L-lysine under optimum condition.

  • PDF

Site-speci fic Inactivation o meso-Diaminopimelate-dehydrogenase Gene (ddh) in a Lysine-producing Brevibacterium lactofementum. (Brevibacterium lactofermentum 에서 meso-Diaminopimelate-dehydrogenase Gene (ddh)의 Site-specific Inactivation)

  • 김옥미;박선희;이갑랑
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 1998
  • Brevibacterium lactofermentum, a gram-positive bacteria, has both the diaminopimelate (DAP) pathway and meso-DAP-dehydrogenase (DDH) pathway for L-lysine biosynthesis. To investigate importance of DDH pathway and the related ddh gene in lysine production, we introduced site-specific mutagenesis technique. A 300 bp DNA fragment central to the meso-DAP-dehydrogenase gene (ddh) of B. lactofermentum was used to inactive chromosomal ddh gene via homologous recombination. Southern hybridization analysis confirmed that the chromosomal ddh gene was disrupted by the vector sequence. The B. lactofementum ddh mutant obtained have an inactive DDH pathway. The results reveal that inactivation of the ddh gene in B. lactofermentum leads to dramatic reduction of lysine production as well as decrease of the growth rate, indicating that the DDH pathway is essential for high-level lysine production as well as biosynthesis of meso-DAP.

  • PDF