• Title/Summary/Keyword: $ZrO_2$-C

Search Result 1,180, Processing Time 0.022 seconds

Study on the R-curve Behaviour in $Al_2O_3-ZrO_2-SiC$ Whisker Comosite ($Al_2O_3-ZrO_2-SiC$ Whisker 복합재료에서의 R-curve 거동에 관한 연구)

  • Kim, Hyun-Ha;Park, Hyun;Choi,Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.731-739
    • /
    • 1993
  • R-curve measurements were performed on Al2O3(matrix)-ZrO2-SiC whisker composite and Al2O3-ZrO2, Al2O3-SiC whisker composites in the favor of comparing the effect of ZrO2 and SiC whisker, as a second phase, to Al2O3 matrix. Al2O3-SiC whisker and Al2O3-ZrO2-SiC whisker were fabricated by hot pressing at 1$700^{\circ}C$, 15MPa and Al2O3-ZrO2 by pressureless sintering at 1$600^{\circ}C$. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension and R-curve behaviour was determined from the relationship which is KR=K0(Δa)m. R-curveresults were KR=6.173$\times$Δa0.031 for Al2O3-ZrO2, KR=18.796$\times$Δa0.172 for Al2O3-SiC whisker and KR=11.96$\times$Δa0.110 for Al2O3-ZrO2-SiC whisker composite. From the analysis of R-curve and expeirmental data above three composites, it is found that R-curve behaviour of Al2O3-ZrO2-SiC whisker composite was dominated initially by the strengthening effect of ZrO2 and after, some extended crack were influenced by the effect of SiC whisker. Analysis of SEM and X-ray data revealed that whisker bridging in the crack wake and whisker pull-out mechanisms were the main mechanism for the R-curve behaviour.

  • PDF

Influence of $ZrO_2$ on Microstructure and Mechanical Strength of Sintered Magnesia (마그네시아 소결체의 미세구조와 강도에 미치는 $ZrO_2$의 영향)

  • 이윤복;이종현;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1053-1059
    • /
    • 1994
  • The influence of ZrO2 addition on microstructre and mechanical strength of magnesia ceramics were discussed. ZrO2 was existed as a cubic phase resulted from MgO solubility into ZrO2 on firing at temperature range from 130$0^{\circ}C$ to 1$600^{\circ}C$ for 2 h. The addition of ZrO2 markedly promoted the densification of MgO also above 150$0^{\circ}C$ and the sintered density at 1$600^{\circ}C$, 2 h reached to 95.2% of the theoretical. The solubility of MgO into c-ZrO2 was about 7.68 wt% and it was segregated at grain boundary on cooling to room temperature. ZrO2 existing as a second phase retarded the grain growth of MgO. The bending strength were increased to 240 MPa with the amount of ZrO2.

  • PDF

Preparation of ZrC/SiC by Carbothermal Reduction of Zircon (지르콘의 탄소열환원에 의한 ZrC/SiC의 합성)

  • Park, Hong-Chae;Lee, Yoon-Bok;Lee, Cheol-Gyu;Oh, Ki-Dong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1044-1055
    • /
    • 1994
  • The preparation of ZrC/SiC mixed powders from $ZrSiO_4/C$ and $ZrSiO_4/Al/C$ systems was attempted in the temperature range below $1600^{\circ}C$ under Ar or $Ar/H_2$ gas flow(100-500ml/min). The formation mechanism and kinetics of ZrC/SiC were suggested and the resultant powders were characterized. In $ZrSiO_4/C$ system, ZrC and SiC were formed by competitive reaction of $ZrO_2(s)$ and SiO(g) with carbon at temperature higher than $1400^{\circ}C$. The apparent activation energy for the formation of ZrC was approximately 18.5kcal/mol($1400-1600^{\circ}C$). In $ZrSiO_4/Al/C$ system, ZrC was formed by reaction of ZrO(g) with Al(l, g) and carbon at temperature higher than $1200^{\circ}C$, and SiC was formed by reduction-carbonization of SiO(g) with Al(l, g) and carbon at temperature higher than $1300^{\circ}C$. The products obtained at $1600^{\circ}C$ for 5h consisted of ZrC with lattice constant of $4.679{\AA}$ and crystallite size of $640{\AA}$, and SiC with lattice constant of $4.135{\AA}$ and crystallize size of $500{\AA}$. And also, the mean particle size was about $21.8{\mu}m$.

  • PDF

Microstructure and Mechanical Properties of $Al_2$O$_3$/t-ZrO$_2$ Particulate Composites (Al$_2$O$_3$/t-ZrO$_2$ 입자복합체의 미세구조 및 기계적 성질)

  • 심동훈;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.734-741
    • /
    • 1999
  • Al2O3/t-ZrO2 particulate composites were prepared by sintering at 150$0^{\circ}C$ and 1$600^{\circ}C$ for 2h in air and microstructure and mechanical properties of the composites were investigated. Although most ZrO2 particles existed at Al2O3 grain boundaries a few ZrO2 particles within Al2O3 grains. Al2O3 grain growth was depressed due to the pinning effect by ZrO2 particles. During sintering coarsening of intergranular ZrO2 particles occurred as a results of the elimination of ZrO2 intraagglomerate grain boundaries and the coalescence of dragged ZrO2 particles by migrating Al2O3 grain boundries. Changes in mechanical properties of Al2O3 composites were dependant on microstructure of Al2O3 matrix and on size and structure of dispersed ZrO2.

  • PDF

Weibull Statistical Analysis on Mechanical Properties in ZrO2 with SiC Additive (SiC 첨가한 ZrO2의 기계적 특성에 대한 와이블 통계 해석)

  • Nam, Ki Woo;Kim, Seon Jin;Kim, Dae Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.901-907
    • /
    • 2015
  • The Vickers hardness test is a common method used to characterize the hardness of ceramic materials. However, the hardness is not a deterministic value, but is a random variable. The objective of this paper is to investigate the statistical properties of the bending strength and a set of Vickers hardness values in single $ZrO_2$ and composite $ZrO_2/SiC$ with a SiC additive. In this work, we compare the characteristic value and variation with the results based on Weibull statistical analysis. The probability distributions of the bending strength and Vickers hardness agreed relatively well with the Weibull distribution. We evaluate the scale parameter and shape parameter in asreceived $ZrO_2$ and $ZrO_2/SiC$ composite ceramics, as well as in their heat treated ceramics.

Microstructure and Mechanical Properties of $Al_2O_3$-$ZrO_2$-Nb Composites Prepared by Reaction Sintering (반응소결로 얻어진 $Al_2O_3$-$ZrO_2$-Nb 복합체의 미세구조와 기계적 성질)

  • ;;;R.J. Brook
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.422-428
    • /
    • 1991
  • The reaction sintering of Al2O3-ZrO2-Nb composite has been investigated using Al2O3, and ZrAl2 powders. Two kinds of specimens, 78.3Al2O3-14.0Nb2O5-7.7ZrAl2 in wt.% (AZN-5) and 72.3Al2O3-13.8Nb2O5-7.5ZrAl2-6.4ZrO2(AZN-10), were prepared. Powder compacts were sintered at various temperatures between 1$600^{\circ}C$ and 1$700^{\circ}C$ for 30 min in Ar. DTA and X-ray analysis have showen that a reaction between Nb2O5 and ZrAl2 started at 149$0^{\circ}C$ to form Al2O3, ZrO2, and Nb. The sintered density increased with the sintering temperature. AZN-10 specimen showed higher density than AZN-5 specimen for almost all the experimental conditions. Al2O3-ZrO2-Nb composite hot pressed after reaction sintering showed higher toughness and lower hardness than hot pressed Al2O3-ZrO2. The crack propagated through many metallic Nb particles which showed plastic deformation, and this is the cause of the increase in toughness of Al2O3-ZrO2-Nb composite over Al2O3-ZrO2.

  • PDF

Hydrothermal Precipitation of PZT Powder (PZT분말의 수열합성에 관한 연구)

  • 이경희;이병하;대문정기;천하희흥지;강원호;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.397-403
    • /
    • 1987
  • Pb(Zr0.52Ti0.48)O3 powders were prepared by hydrothermal synthesis. Using soluble salts such as Pb(NO3)2, TiCl4 and ZrOCl2$.$8H2O and oxide such as PbO and TiO2 as starting materials, PZT powder was hydrothermally synthesized at the temperature range between 150$^{\circ}C$ and 200$^{\circ}C$. The result showed that reactivity by alkali was decreased in the sequence of Pb(NO3)2, TiCl4, ZrOCl2, PbO, TiO2 and ZrO2. Using the first three soluble salts, PZT powder was synthesiged at 150$^{\circ}C$ for 1hr. In PbO-TiCl4-ZrOCl2 system, PZT powder was synthesized at 150$^{\circ}C$ for 8rs. In Pb(NO3)2-TiO2-ZrOCl2 system, PZT powder was synthesized at 150$^{\circ}C$ for 16hrs, in PbO-TiO2-ZrOCl2 system, the powder was synthesized at 200$^{\circ}C$ for 8hrs.

  • PDF

Control of Microstructures and Properties of Composites of the Al2O3/ZrO2-ZrO2-Spinel System: I. Preparation and Sintering Behavior of Al2O3-ZrO2 Composite Powders (Al2O3/ZrO2-Spinel계 복합체의 미세구조 및 물성제어: I. Al2O3-ZrO2 복합분체의 제조 및 소결특성)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.797-805
    • /
    • 1992
  • Al2O3-20 wt% ZrO2 composite powders to be used as the starting materials of the Al2O3/ZrO2-Spinel composite system were prepared by the use of the emulsion-hot kerosene drying method. The crystalline phase of ZrO2 in the synthesized Al2O3-ZrO2 composite powders was 100% tetragonal but the small amount of t-ZrO2 was transformed into m-ZrO2 after crushing. The hardness, fracture toughness, and flexural strength of the composite, which was sintered at 1650$^{\circ}C$ for 4 hrs after calcining at 1100$^{\circ}C$ for 2 hrs and had the relative density of 99%, were 15.7 GPa, 4.97 MN/m3/2, and 390 MPa, respectively. The fracture form in the sintered composites was found to be the intergranular fracture.

  • PDF

Fabrication of $Y_2O_3-ZrO_2$ and $CaO-ZrO_2$ Fibers by Sol-Gel Process and Their Phase Characterization by Raman Microprobe (졸-겔법에 의한 $Y_2O_3-ZrO_2$계와 $CaO-ZrO_2$계 섬유의 제조 및 Raman Microprobe에 의한 상분석)

  • 황진명;은희태;권혁기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.104-114
    • /
    • 1994
  • ZrO2 fibers were fabricated by means of the Sol-Gel process using Zr(O-nC3H7)4-H2O-C2H5OH-HNO3 solution as a starting material. The optimum experimental parameters such as molar ratio of starting materials, concentration, temperature, viscosity, the amounts of stabilizer and the pH of solution were determined. The experimentally determined optimum variables which produce good ZrO2 fibers were used to manufacture the Y2O3-and CaO-ZrO2 fibers. The amounts of Y2O3 and CaO were varied within the range from 1.5~5 mol% and 3~15 mol% respectively. The phase transformation and microstructural evolution of the fabricated ZrO2 gel fibers were investigated after heat treatments up to 120$0^{\circ}C$ by X-ray diffraction, Raman microprobe spectroscopy, SEM, and specific surface area and pore volume measurements. From the analysis of X-ray diffraction and Raman spectra, the phase of heat treated Y2O3-and CaO partially stabilized ZrO2 gel fibers(Y2O3:2.5~3 mol%, CaO:6~9 mol%) were identified as a tetragonal phase up to 100$0^{\circ}C$. The maximum tensile strength of 2.5Y2O3-97.5ZrO2 and 6CaO-94ZrO2 (in mol%) fibers heat treated at 100$0^{\circ}C$ for 1 hr was found be 1.3~2 GPa with diameters of 10~20 ${\mu}{\textrm}{m}$.

  • PDF

A Study on the Adsorption Characteristic of Cobalt on ZrO2 in High-Temperature Water (고온수중에서 ZrO2의 코발트흡착 특성에 대한 연구)

  • Kim, Yu-Hwan;Bae, Seong-Youl
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.267-275
    • /
    • 1997
  • $ZrO_2$ Powder was Prepared by sol-gel process and the adsorption characteristic of cobalt($Co^{2+}$) by $ZrO_2$ adsorbent in high-temperature water was investigated using batch adsorption experiment with a stirred autoclave. The prepared $ZrO_2$ was calcined at $600{\sim}1400^{\circ}C$ and analyzed by X-ray diffractometry, SEM, BET surface area, FT-IR and TG-DTA measurement. The tetragonal Phase of $ZrO_2$ is produced $480^{\circ}C$ from amorphous gel at temperature $480^{\circ}C$. Both tetragonal and monoclinic phase of $ZrO_2$ exist at temperature between $600^{\circ}C$ and $1000^{\circ}C$. At temperature $1200^{\circ}C$, tetragonal to monoclinic phase trasition is occurred. The $Co^{2+}$ adsorption capacity of $ZrO_2$ calcined at $600^{\circ}C$ for 4 hours is 0.16 meq $Co^{2+}/g$ adsorbent in the high temperature at $250^{\circ}C$. The adsorption of $Co^{2+}$ on the $ZrO_2$ adsorbent is irreversible endothermic in the temperature range ($125-175^{\circ}C$). The standard enthalpy change (${\Delta}H^{\circ}$) of $ZrO_2$ calcined at $600^{\circ}C$ for 4 hours is 18 kJ/gmol.

  • PDF