• Title/Summary/Keyword: $YPO_4:Eu^{3+}$

Search Result 2, Processing Time 0.016 seconds

Synthesis and Photoluminescence Properties of Y1-x(P1-y-zNbyVz)O4:Eux Phosphors by Modified Combinatorial Chemistry Method (조합화학 기법을 이용한 Y1-x(P1-y-zNbyVz)O4:Eux 형광체의 합성 및 빛 발광 특성)

  • Zeon, Il-Woon;Sohn, Kee-Sun;Park, Hee-Dong
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.69-75
    • /
    • 2002
  • The $Y_{1-x}(P_{1-y-z}Nb_yV_z)O_4:Eu_x$ blue and red emitting phosphors were prepared by the combinatorial chemistry method. The combinatorial library was designed to investigate the luminescence of the $Y_{1-x}(P_{1-y-z}Nb_yV_z)O_4:Eu_x$ phosphors under 254 nm and 147 nm excitations. In addition, the crystallinity and morphology of phosphors were checked by XRD and SEM. Based on the results from the combinatorial screenings, luminescent properties of phosphors are strongly dependent on the concentration of doping metal ions. It was found that a new phosphor $Y_{0.88}(P_{0.92}Nb_{0.05}V_{0.03})O_4:Eu_{0.12}$ shows excellent luminescent efficiency comparing to the $Y_{0.88}PO_4:Eu_{0.12}$ red phosphor.

Effects of Eu3+ Concentration on the Photoluminescence Properties of Y1-xPO4:Eux3+ Red Phosphor (Eu3+ 함량비가 Y1-xPO4:Eux3+ 적색 형광체의 발광 특성에 미치는 영향)

  • Cho, Seon-Woog;Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.430-435
    • /
    • 2011
  • $Y_{1-x}PO_4:{Eu_x}^{3+}$ red phosphors were synthesized with changing the concentration of $Eu^{3+}$ ion by using a solid-state reaction method. The crystal structures of all the red phosphors were found to be a tetragonal system composed of (200) diffraction peak centered at $25.88^{\circ}$, and the morphology of grains approached the spherical form with homeogenous size distribution as the concentration of $Eu^{3+}$ ion increased. As for the photoluminescence properties, all of the ceramic phosphors, irrespective of $Eu^{3+}$ ion concentration, showed the red-orange and the red emission peaked at 593.0 and 619.2 nm respectively. As the concentration of $Eu^{3+}$ ion increased, the excitation spectrum moved into a longer wavelength with the increase of emission intensity. The maximum excitation and the emission spectrum were observed at 0.15 mol of $Eu^{3+}$ ion.