• 제목/요약/키워드: $YAG(Al_5Y_3O_{12})$

검색결과 82건 처리시간 0.027초

YAG와 기공에 의한 $SiC-TiB_2$ 전도성세라믹 복합체의 특성 평가 (Estimation of the Properties for the $SiC-TiB_2$ Electroconductive Ceramic Composites by YAG and Porosity)

  • 신용덕;이동윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권11호
    • /
    • pp.544-549
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC-39vo1.%TiB$_2$electroconductive ceramic composites were investigated as functions of the liquid additives of $Al_2O_3+Y_2O_3$ and the sintering temperature. The result of phase analysis for the SiC-39vo1.%TiB$_2$ composites by XRD revealed $\alpha -SiC(6H),\; TiB_2,\; and YAG(Al_5Y_3O_{12})$ crystal phase. The relative density of SiC-39vo1.% $TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$ contents. The fracture toughness showed the highest value of $7.8 MPa.m_{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$additives at $1750^{\circk}C$. The electrical resistivity of the SiC-39vo1.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25S^{\circ}C \;to\; 700^{\circ}C$.

  • PDF

Spectral Properties of Various $Y_3Al_5O_{12}:Ce^{3+}$ Nanocrystalline Phosphors for the Application of White LEDs

  • Yang, Hee-Sun;Jeon, Mi-Jung;Huh, Young-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1593-1596
    • /
    • 2007
  • Various yellow-emitting $Y_3Al_5O_{12}:Ce^{3+}$ (YAG:Ce) nanocrystalline phosphors, where some $Al^{3+}$ sites are substituted with $Ga^{3+}$ or some Y sites with Gd3+, have been synthesized. The rare earth ions such as $Pr^{3+}$ and $Tb^{3+}$ were also co-doped into YAG:Ce system, leading to the tunability of CIE coordinates of emission.

  • PDF

$\beta-SiC+39vol.%TiB_2$ 복합체의 전기저항률 (Electrical Resistivity of the $\beta-SiC+39vol.%TiB_2$ Composites)

  • 박미림;황철;신용덕;이동윤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.15-18
    • /
    • 2001
  • The composites were fabricated 61 vol% $\beta$-SiC and $39vol%TiB_2$ powders with the liquid forming additives of 8, 12, 16wt% $Al_2O_3+Y_2O_3$ by hot pressing at $1730^{\circ}C$ and subsequent pressed annealing and pressureless annealing at $1750^{\circ}C$ for 4 hours to form YAG. The result of phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents. The fracture toughness showed the highest value of $7.77MPa{\cdot}m^{1/2}$ for composites added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $7.3{\times}10^{-4}{\Omega}{\cdot}cm$ and $3.8{\times}10^{-3}/^{\circ}C$, respectively, for composite added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

RF 마그네트론 스퍼터링법에 의한 Y3Al5O12:Ce 형광체 박막의 성장 거동 및 발광 특성 (Growing Behavior and Luminescent Properties of Y3Al5O12:Ce Phosphor Thin Films grown by rf Magnetron Sputtering)

  • 김주원;김영진
    • 한국재료학회지
    • /
    • 제15권8호
    • /
    • pp.548-553
    • /
    • 2005
  • Trivalent cerium$(Ce^{3+})$ activated YAG (yttrium aluminum garnet, $Y_3Al_5O_{12})$) thin films phosphor were deposited on quartz glass substrates by rf magnetron sputtering. The effects of sputtering parameters, annealing atmosphere, and substrates on growing behaviors and luminescent properties were investigated. The sputtering parameters were $O_2/(Ar+O_2)$ gas ratio, rf power, and deposition time. XRD (X-ray diffractometery) spectra exhibited that as-deposited films were amorphous, while they were transformed to the crystalline phases by post-annealing. The crystallinity and the atomic ratio strongly depended on the sputtering gas ratio $O_2/(Ar+O_2)$. High quality YAG:Ce thin films could be obtained at the gas ratio of $50\%$ oxygen. After annealing process, PL (Photoluminescence) spectra excited at 450nm showed a yellow single band at 550nm. The films deposited at the sputtering gas ratio of 50% oxygen exhibited the highest PL intensity.

무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향 (Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

연소합성법에 의한 YAG:Ce 형광체의 발광 특성 (Photoluminescence Characteristics of YAG:Ce Phosphor by Combustion Method)

  • 이승규;최형욱
    • 한국전기전자재료학회논문지
    • /
    • 제20권6호
    • /
    • pp.536-540
    • /
    • 2007
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by combustion method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG Phase can form through sintering at $1000^{\circ}C$ for 2 h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate Phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2sO_9$) observed in the sintering process. The powders absorbed excitation energy in the range $410{\sim}510\;nm$. Also, the crystalline YAG:Ce showed broad emission peaks in the range $480{\sim}600\;nm$ and had maximum intensity at 528 nm.

Er3+ doped Y3Al5O12 단결정의 core 영역 및 광학적 특성 (Core region and optical properties of Er3+ doped Y3Al5O12 single crystals)

  • 심장보;이영진;강진기;이영국
    • 한국결정성장학회지
    • /
    • 제25권3호
    • /
    • pp.111-115
    • /
    • 2015
  • $Er^{3+}$ 이온이 5, 7.3, 8, 10 at.% 치환된 $Y_3Al_5O_{12}$ 단결정을 Czochralski법으로 질소 분위기에서 성장시켰다. 1.0 mm/h의 인상속도와 10 rpm의 회전 속도로 50 mm의 결정 직경을 가진 <111> 방향의 $Er:Y_3Al_5O_{12}$ 단결정을 얻었다. 두꺼운 직경의 core 영역은 주로 결정 성장 중 직경 변화가 있는 영역에서 발생되었다. 결정 내에서 $Er^{3+}$의 농도는 융액 내의 농도와 같았다. Core 영역의 $Er^{3+}$ 농도는 core가 없는 영역보다 다소 높게 검출되었다. $Er^{3+}$ 이온의 도핑 농도가 증가함에 따라 형광 수명은 포화되었다.

상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌;이정훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Nanocrystalline $Y_3Al_5O_{12}$:Ce Phosphor-Based White Light-Emitting Diodes Embedded with CdS:Mn/ZnS Core/Shell Quantum Dots

  • Kim, Jong-Uk;Lee, Dong-Kyoon;Lee, Jong-Jin;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.588-590
    • /
    • 2008
  • Yellow-emitting $Y_3Al_5O_{12}$:Ce nanocrystalline phosphor and orange-emitting CdS:Mn/ZnS core/shell quantum dots were prepared by a modified polyol and a reverse micelle chemistry, respectively. To compensate a poor color rendering index of YAG:Ce nanocrystalline phosphor due to the lack of red spectral component, CdS:Mn/ZnS quantum dots were blended into YAG:Ce. Based on spectral evolutions in the blended systems, hybrid white light emitting diodes are fabricated and characterized.

  • PDF

$\beta-SIC-ZrB_{2}$복합체의 파괴인성과 전기전도도에 미치는 YAG의 영향 (Effect of YAG on the Fracture Toughness and Electrical Conductivity of $\beta-SIC-ZrB_{2}$ Composites)

  • 신용덕;주진영;윤세원;황철;박미림
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.839-842
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC-ZrB$_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_2$O$_3$+Y$_2$O$_3$. Phase analysis of composites by XRD revelled $\alpha$ -SiC(6H), ZrB$_2$, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ). Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 6.3MPa.m$^{1}$2/ for composites added with 24wt% $Al_2$O$_3$+Y$_2$O$_3$additives at room temperature. The resistance temperature coefficient respectively showed the value of 2.46$\times$10$^{-3}$ , 2.47$\times$10$^{-3}$ , 2.52$\times$ 10$^{-3}$ $^{\circ}C$ for composite added with 16, 20, 24wt% A1$_2$O$_3$+Y$_2$O$_3$additives. The electircal resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to 90$0^{\circ}C$.

  • PDF