• Title/Summary/Keyword: $VSb/Al_2O_3$

Search Result 2, Processing Time 0.018 seconds

Vapor-phase Oxidation of Alkylaromatics over V/TiO2 and VSb/Al2O3 Catalysts: Effect of Alkali Metals

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2405-2408
    • /
    • 2007
  • Oxidation of alkylaromatics including toluene and p-methoxytoluene has been carried out over alkali metal (AM)-containing catalysts such as AM-V/TiO2 and AM-VSb/Al2O3 in vapor-phase using oxygen as an oxidant. The selectivity for partial oxidations increases with incorporation of an alkali metal or with increasing the basicity of alkali metals (from Na to Cs), irrespective of the supports or reactants. However, the conversion is nearly constant or slightly decreasing with the addition of alkali metals in the catalyst. The increased selectivity may be related with the decreased acidity even though more detailed work is necessary to understand the effect of alkali metals in the oxidation. The AM-VSb/Al2O3 may be suggested as a potential selective catalyst for vapor-phase oxidations.

Effect of Various Supports on the Catalytic Performance of V-Sb Oxides in the Oxidative Dehydrogenation of sobutane (이소부탄의 산화탈수소반응에 대한 여러 담지체에 따른 V-Sb 산화물 촉매 성능 효과)

  • Shamilov, N.T.;Vislovskiy, V.P.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.81-85
    • /
    • 2011
  • $V_{0.9}Sb_{0.1}O_x$ systems, bulk and deposited on different supports (five types of $\gamma$-aluminas, $\alpha$-alumina, silica-alumina, silica gel, magnesium oxide), have been tested in the oxidative dehydrogenation (ODH) of iso-butane. Catalytic performance of VSb oxides has shown to be highly dependent on the support and the nature of the support decreasing in a series: $\gamma$-$Al_2O_3$ > $\alpha$-$Al_2O_3$ > Si-Al-O > $SiO_2$ $\approx$ MgO $\gg$ unsupported. Variation of the V-Sb-O-loading in the studied range of coverage (0.5-2 theoretical monolayer) only slightly influences the catalysts' activity and selectivity. The best catalytic performance of $\gamma$-alumina-supported $V_{0.9}Sb_{0.1}O_x$ systems can be explained by the optimal surface interaction between support and supported components resulting in the formation of well-spread amorphous active $VO_x$-component with vanadium in a high oxidation state.