• Title/Summary/Keyword: $U_3Si$ Fuel

Search Result 38, Processing Time 0.028 seconds

Performance of U3Si-Al dispersion fuel at HANARO full-power condition

  • Chae, Heetaek;Lee, Choong Sung;Park, Jong Man;Kim, Heemoon;Kim, Yeon Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.899-906
    • /
    • 2018
  • The irradiation performance of $U_3Si$ dispersion fuel in an Al matrix, $U_3Si-Al$, under the Hi-Flux Advanced Neutron Application Reactor (HANARO) design full-power condition of 30 MW was tested for full-power qualification of the fuel. A test assembly was fabricated containing 18 fuel rods made with atomized $U_3Si$ powder manufactured at the Korea Atomic Energy Research Institute. The test assembly was irradiated for 188 full-power operation days in the HANARO subject to the normal fuel-loading scheme and achieved about 60 at% U-235 average burnup and 75 at% U-235 peak burnup. The maximum linear power of the test assembly was 98 kW/m. Nondestructive and destructive postirradiation examinations were conducted. The measured postirradiation examination data were compared with data from previous irradiations and the design criteria required for HANARO fuel. Consequently, it was concluded that in-pile performance was acceptable and fuel integrity was maintained, and the behavior satisfied the fuel design requirements.

Preparation and Characterization of Uranium Silicide Dispersion Nuclear Fuel by Centrifugal Atomization (원심분무에 의한 Uranlum filicide 분산핵연료의 제조와 특성)

  • 김창규
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.72-78
    • /
    • 1994
  • Two kinds of $U_3Si$ powders and $U_3Si$ dispersed nuclear fuel meats have been prepared by conventional comminution process and a newly developed rotating disk atomization process. In contrast to angular shape and broad size distribution of the conventionally processed powder, the atomized powder was spherical and showed narrow size distribution. For the atomized powder, the heat treatment time for the formation of $U_3Si$ by a peritectoid reaction was reduced to about one tenth, thanks to microstructure refinement by rapid cooling of about 5$\times$104 K/s. The extruding pressure of atomized $U_3Si$ powder and Al powder mixture was lower than that of comminuted $U_3Si$ and Al powder mixture. The elongation of the atomization processed fuel meats was much higher than that of the comminution processed fuel meats and remained over 10% up to 80wt.% of $U_3Si$ powder fraction in the fuel meats. It appears therefore that the loading density of $U_3Si$ in fuel meat can be increased by using atomized $U_3Si$ powder. The atomized spherical particles were randomly distributed, while the comminuted particles with angular and longish shape were considerably aligned along the extrusion direction. Along the transverse direction of the extraction the electrical conductivity of the atomization processed fuel meats was appreciably higher than that of comminution processed fuel meats. This tendency became pronounced as $U_3Si$ content increased. Because the thermal conduction which is believed to be proportioned to the electrical conduction in the nuclear fuel meats occurs in radial direction, the atomization processed fuel can be better used in research reactors where high thermal conductivity is required.

  • PDF

USE OF A CENTRIFUGAL ATOMIZATION PROCESS IN THE DEVELOPMENT OF RESEARCH REACTOR FUEL

  • Kim, Chang-Kyu;Park, Jong-Man;Ryu, Ho-Jin
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.617-626
    • /
    • 2007
  • A centrifugal atomization process for uranium fuel was developed in order to fabricate high uranium density dispersion fuel for advanced research reactors. Spherical powders of $U_3Si$ and U-Mo were successfully fabricated and dispersed in aluminum matrices. Thermal and mechanical properties of dispersion fuel meat were characterized. Irradiation tests at the research reactor HANARO confirm the excellent performance of high uranium density dispersion fuel.

A study on the Porosity Characterization of U$_3$Si$_2$ Dispersion Fuel prepared with Atomized and Comminuted Powders

  • Kim, Chang-Kyu;Ko, Young-Mo;Cho, Hae-Dong;Lee, Don-Bae;Kim, Ki-Hwan;Lee, Chong-Tak;Kuk, Il-Hiun;G. L. Hofman
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.623-629
    • /
    • 1995
  • To investigate the effects of powder shape on U loading density of fuel meat, two kinds of fuel meats were prepared with atomized and comminuted U$_3$Si$_2$ powders by extrusion or rolling process. Extruded fuel meats with atomized spherical U$_3$Si$_2$ powder appeared to have much less porosity than those with comminuted irregular U$_3$Si$_2$ powder at higher U$_3$Si$_2$ fraction- The U$_3$Si$_2$ particles with spherical shape are less fractured in extrusion than in rolling. Most of atomized particles on the whole maintained to have spherical shapes in the extrusion. It has been shown that atomized spherical particles are expected to approach similar upper loading limits comparing with comminuted particles in rolled plates, but exceed comminuted powder loading limits in extruded rods.

  • PDF

EPMA Analysis of Inter-reaction Layer in Irradiated U3Si-Al Fuels (EPMA를 이용한 U3Si/Al 조사 핵연료의 반응층 분석)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Kim, Hee-Moon;Park, Jong-Man;Kim, Myung-Han
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2004
  • Fission products and Inter reaction layer of $U_3Si-Al$ dispersion fuel, irradiated in HANARO research reactor with 121 kW/m of maximum liner power and 63 at% of average burn-up, was characterization by EPMA (Electron Probe Micro Analyzer). The fuel punching system developed by Irradiated Materials Examination Facility (IMEF) has used to make these samples for the EPMA. With this system a very small and thin specimen which is 1.57 mm in diameter and 2 mm in thickness respectively has been fabricated to protect the EPMA operator from high radioactive fuel and to mini-mize the equivalent dose rate less than 150 mSv/h. EPMA was performed to observe layers of sectional, Inter-reaction and oxide with specimens of cutting and polished. Stoichiometry in the Inter-reaction layer with $16{\mu}m$ of thickness was $U_{2.84}$ Si $Al_{14}$ with calibration of $UO_2$ and $U_{3.24}$ Si $Al_{14.1}$ with calibration of standard specimen. metallic precipitates in this layer were not observed using fission products examination.

Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions

  • Yang, Guangliang;Liao, Hailong;Ding, Tao;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3723-3740
    • /
    • 2021
  • The harsh conditions in the reactor affect the thermal and mechanical performance of the fuel plate heavily. Some in-pile behaviors, like fission-induced swelling, can cause a large deformation of fuel plate at very high burnup, which may even disturb the flow of coolant. In this research, the emphasis is put on the thermal expansion, fission-induced swelling, interaction layer (IL) growth, creep of the fuel meat, and plasticity of the cladding for the U3Si2/Al dispersion fuel plate. A detailed model of the fuel meat swelling is developed. Taking these in-pile behaviors into consideration, the three-dimensional large deformation incremental constitutive relations and stress update algorithms have been developed to study its thermal-mechanical performance under normal conditions using Abaqus. Results have shown that IL can effectively decrease the thermal conductivity of fuel meat. The high Mises stress region mainly locates at the interface between fuel meat and cladding, especially around the side edge of the interface. With irradiation time increasing, the stress in the fuel plate gets larger resulting from the growth of fuel meat swelling but then decreases under the effect of creep deformation. For the cladding, plasticity deformation does not occur within the irradiation time.

A Study on the Separation of Neodymium from the Simulated Solution of $U_3Si/Al$ Spent Nuclear Fuel (모의 사용후분산핵연료($U_3Si/Al$) 용해용액으로부터 네오디뮴 분리에 관한 연구)

  • Choi, Kwang Soon;Kim, Jung Suk;Han, Sun Ho;Park, Soon Dal;Park, Yeong Jae;Joe, Kih Soo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.584-591
    • /
    • 2000
  • The separation of Nd from the simulated $U_3Si/Al$ spent fuel solution with sequential two-step anion exchange separation has been studied. To prepare the simulated $U_3Si/Al$ spent nuclear fuel, unirradiated $U_3Si/Al$ whose composition consists of small $U_3Si$ particle dispersed in an Al matrix with Al cladding was dissolved with a mixture of 4 M HCl and 10 M $HNO_3$ and 8 or 15 fission product elements were added to the dissolved solution. The trace amount of silica in the solutions was removed by evaporating to dryness with HF and the U was adsorbed on the first anion exchange resin. Neodymium can be purely isolated from the fission product elements with a methanol-nitric acid eluent using the second anion exchange resin. A large excess of Al didn't influence on the elution velocity of Nd, but reduced the eluted contents of Nd, Al, Eu, Gd, Sm and Sr, A large amount of Al was removed first from the column with 3 mL of loading solution (0.8 M $HNO_3$/99.8% MeOH) before Nd elution by the eluent [0.04 M $HNO_3$-99.8% MeOH(1:9)]. The recovery of Nd was more than 94%, regardless of Al contents. Taking the 9 to 13 mL fraction of eluate was effective to purely isolate Nd.

  • PDF

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.