• Title/Summary/Keyword: $UV/TiO_2$ System

Search Result 132, Processing Time 0.021 seconds

Experiment on Reduction of Pollutants in Titanium Dioxide Photocatalytic Ventilation System (이산화티탄 광촉매 환기장치의 오염물질 저감 실험)

  • Song, Yong Woo
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, titanium dioxide photocatalyst was applied to the ventilation system to reduce particulate matter and nitrogen oxides (NOx), which are representative indoor harmful substances. A reaction device capable of installing an ultraviolet lamp was designed and manufactured so that the pollutant decomposition effect of the titanium dioxide photocatalyst identified through previous studies could be applied indoors. The reaction device was used on the indoor ventilation system and applied to the Mock-Up test. As a result of the Mock-up test, the NOx reduction performance according to the change in air volume once per hour and five times per hour was confirmed. As a result, it was confirmed that as the number of ventilation increases, the NOx reduction time decreases proportionally, and the reduction performance increases.

Study of Degradation of Bisphenol A with $TiO_2$ Powder in CPC System (CPC (Compound Parabolic Collector) 내 이산화티탄을 이용한 비스페놀 A (Bisphenol A)의 분해에 관한 연구)

  • Hwang, An-Na;Park, Myung-Hee;Lim, Beom-Guk;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2011
  • In this study, photocatalytic degradation and mineralization of bisphenol A (BPA), which has been listed as one of endocrine disruptors, were carried out in the CPC system using $Tio_2$ slurry and UVA irradiation. The degradation efficiency has been investigated under the controlled parameters including initial concentration (5, 10, 20 mg/L), dosage of $Tio_2$ (0.1, 0.5, 1.0 g/L), UVA power (0, 80, 120 W) and temperature (0, 20, 30). At 10mg/L of initial concentration, BPA was degraded above 80% after 10min, BPA were degraded 97% and 49% at 20 mg/L and 30 mg/L, respectively. At $Tio_2$ dosage was 0.1 and 0.5 g/L, the degradations of BPA showed similar trend and were about 70% after 1 hr, and the degradation of BPA was above 80% after 30 min at 1 g/L of $Tio_2$ dosage. The increase of degradation seem to be due to the increase in the total surface area, namely number of active sites, available for the photocatalytic reaction as the dosage of photocatalyst increased. When the UVA power was 120 W, BPA was degraded rapidly above 60% after 10min of reaction time. To investigate the effect of temperature, carried out experiment controlled temperature, there were no significant differences depending on the temperature. After 1hr, the degradation of BPA were 46%, 67%, and 69% at 10, 20 and $30^{\circ}C$.