• 제목/요약/키워드: $UO_2 -Gd_2 O_3$ fuel

검색결과 26건 처리시간 0.032초

Sintering of a Mixture of $UO_2$ and $Gd_2 O_3$ Powders Doped With $Cr_2 O_3-SiO_2$

  • Kim, Keon-Sik;Song, Kun-Woo;Kang, Ki-Won;Yang, Jae-Ho;Kim, Jong-Hun
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.386-396
    • /
    • 2001
  • Mixtures Of AUC-UO$_2$and Gd$_2$O$_3$ Powders doped With Cr$_2$O$_3$ or Cr$_2$O$_3$-SiO$_2$ were Pressed and sintered at 1730 t in hydrogen gas witk various water-vapor contents. The density of UO$_2$- 6wt% Gd$_2$O$_3$ pellets can be increased from 91% TD to 94.5% TD in 1 vol% $H_2O$-H$_2$ gases by the addition of 0.02wt% Cr$_2$O$_3$-(0.01~0.04) wt% SiO$_2$. The magnitude of density increase is much larger in (1~3 vol%) $H_2O$-H$_2$ gases than in 0.05 vol% $H_2O$-H$_2$ gas. The densification of U0$_2$- Gd$_2$O$_3$ compact is significantly delayed in the temperature range between 1300 and 1500 t , but that of compacts with Cr$_2$O$_3$-SiO$_2$ is not. The role of Cr$_2$O$_3$ and SiO$_2$ in densification is discussed.

  • PDF

Use of americium as a burnable absorber for VVER-1200 reactor

  • Shelley, Afroza;Ovi, Mahmud Hasan
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2454-2463
    • /
    • 2021
  • The objective of this research is to the use of americium (AmO2) as a burnable absorber effectively instead of conventional gadolinium (Gd2O3) for VVER-1200 reactor by analyzing its impacts on reactivity, power peaking factor (PPF), safety factor, and quality of the spent fuel. The assembly is burned to 60 GWd/t by using SRAC-2006 code and JENDL-4.0 data library for finding the optimum amount and effective way of using AmO2 as a burnable absorber. From these studies, it is found that AmO2 can decrease the excess reactivity like Gd2O3 without changing the criticality life span and enrichment of 235U. A homogeneous mixture of the 0.20% AmO2+ 4.95% enriched UO2 fuel rod (model MF-4) decreases the PPF than the reference assembly. The use of AmO2+UO2 in the integral burnable absorber (IBA) rod or the outer layer could also decrease the PPF up to 10 GWd/t but increases rapidly after 30 GWd/t, which could be a safety threat. The fuel temperature coefficient and void coefficient of the model MF-4 are the same as the reference assembly. In addition, 22% of initially loaded Am are burning effectively and contributing to the power production.

Gd-doped UO2의 상분리 및 UO2에 고용된 Gd 함량 측정 (Phase Separation of Gd-doped UO2 and Measurement of Gd Content Dissolved in Uranium Oxide)

  • 김건식;양재호;송근우;김길무
    • 한국세라믹학회지
    • /
    • 제40권9호
    • /
    • pp.916-920
    • /
    • 2003
  • 무게 비로 6%의 Gd가 치환된 이산화 우라늄, ( $U_{0.913}$G $d_{0.087}$) $O_2$를 475$^{\circ}C$ 공기 분위기에서 산화시키고 130$0^{\circ}C$ 공기 분위기에서 열처리시킬 때 변화하는 결정 구조, 형상 등을 XRD, SEM 및 EPMA 등을 이용하여 관찰하였다. 입방계 구조의 ( $U_{0.913}$G $d_{0.087}$) $O_2$는 475$^{\circ}C$ 공기 분위기에서 사방정게 구조의 ( $U_{0.913}$G $d_{0.087}$)$_3$ $O_{8}$로 산화되었다. 저온 산화에 의해 생성된 사방정계 130$0^{\circ}C$의 고온에서 열처리하는 동안 사방정계 상과 압방정계 상으로 다시 분리되었다. XRD와 EPMA 관찰결과, 분리된 사방정계 상과 입방정계 상은 각각 $U_3$ $O_{8}$과 ( $U_{0.67}$G $d_{0.33}$) $O_{2+}$x/인 것을 확인하였다. 열처리 동안 일어나는 일련의 산화와 상 분리 과정은 상 반응식으로 나타낼 수 있다. 각 열처리 단계에서의 무게 변화비를 측정하고 상 반응식을 이용하면 (U,Gd) $O_2$에 고용되어 있는 초기 Gd 함량을 정확히 계산할 수 있다.

Thermophysical Properties of $UO_2$ Fuel Materials

  • Lee, Hung-Joo;Kim, Chul-Whan
    • Nuclear Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.81-88
    • /
    • 1976
  • Flash Method로서 열에 관련된 물리적인 성질(밀도, 정압비열 또는 열확산 계수등)을 측정할 수 있는데 이 방법을 이용하여 핵연료의 열화산 계수를 상온(300k)으로부터 고온(1400 K)까지 측정하였으며 정압비열은 시차열용량법 (Differential Scanning Calorimeter)에 의하여 상온에서부터 500k까지 측정하였고 열전도 계수는 열확산 계수, 정압비열 그리고 핵연료의 밀도로부터 계산하였다. 본 연구의 결과는 낮은 온도(500k 이하)에서는 불순물의 정도(Impurity Level)에 따라서 열전도 계수가 크게 달라지기 때문에 중요시되지만 높은 온도(1000k 이상)에서는 불순물의 정도에 따른 열전도 계수의 변화가 근소함으로 그의 존재유무가 비교적 중요시되지 않는 Dielectric Material의 보편적인 경향과 완전히 일치하였다. Gd$_2$O$_3$를 첨가한 다수의 $UO_2$ Sample들에 대한 열확산 계수를 상온에서 측정하여 비교함으로써 이것을 재확인하였다.

  • PDF

APPLICATION OF A GENETIC ALGORITHM FOR THE OPTIMIZATION OF ENRICHMENT ZONING AND GADOLINIA FUEL (UO2/Gd2O3) ROD DESIGNS IN OPR1000s

  • Kwon, Tae-Je;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.273-282
    • /
    • 2012
  • A new effective methodology for optimizing the enrichment of low-enriched zones as well as gadolinia fuel ($UO_2/Gd_2O_3$) rod designs in PLUS7 fuel assemblies was developed to minimize the maximum peak power in the core and to maximize the cycle lifetime. An automated link code was developed to integrate the genetic algorithm (GA) and the core design code package of ALPHA/PHOENIX-P/ANC and to generate and evaluate the candidates to be optimized efficiently through the integrated code package. This study introduces an optimization technique for the optimization of gadolinia fuel rod designs in order to effectively reduce the peak powers for a few hot assemblies simultaneously during the cycle. Coupled with the gadolinia optimization, the optimum enrichments were determined using the same automated code package. Applying this technique to the reference core of Ulchin Unit 4 Cycle 11, the gadolinia fuel rods in each hot assembly were optimized to different numbers and positions from their original designs, and the maximum peak power was decreased by 2.5%, while the independent optimization technique showed a decrease of 1.6% for the same fuel assembly. The lower enrichments at the fuel rods adjacent to the corner gap (CG), guide tube (GT), and instrumentation tube (IT) were optimized from the current 4.1, 4.1, 4.1 w/o to 4.65, 4.2, 4.2 w/o. The increase in the cycle lifetime achieved through this methodology was 5 effective full-power days (EFPD) on an ideal equilibrium cycle basis while keeping the peak power as low as 2.3% compared with the original design.

The High Temperature Oxidation Behavior of l0wt%$Gd_2 O_3$- Doped $UO_2$

  • J.H. Yang;K.W. Kang;Kim, K.S.;K.W. Song;Kim, J.H.
    • Nuclear Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.307-314
    • /
    • 2001
  • The changes of weight gain, structure, morphology and uranium oxidation states in l0wt% G $d_2$ $O_3$-doped U $O_2$ during the oxidation below 475$^{\circ}C$ and heat treatment at 130$0^{\circ}C$ in air were investigated using TGA, XRD, SEM, EPMA and XPS. The room temperature ( $U_{0.86}$G $d_{0.14}$) $O_2$Cubic Phase Converted to highly distorted ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type sing1e Phase by oxidation at 475 $^{\circ}C$ in air. This oxidized phase was reduced by annealing at 130$0^{\circ}C$ in air. The room temperature XRD pattern of the 130$0^{\circ}C$ annealed powder revealed that ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type single phase was separated into Gd-depleted $U_3$ $O_{8}$ and Gd-enriched ( $U_{0.7}$G $d_{0.3}$) $O_2$$_{+x}$ type cubic phase. The reduction and phase separation by the high temperature annealing of kinetically metastable and highly deformed ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type phase are interpreted in terms of cation size difference between G $d^3$$^{+}$ and U according to the oxidation state of U.U.U.U.U.te of U.U.U.U.U.

  • PDF