• Title/Summary/Keyword: $UO_2$ pellet

Search Result 117, Processing Time 0.026 seconds

The Effect of PVA-Al(III) Complex on Pore Formation and Grain Growth of $UO_2$ Sintered Pellet (II) (PVA-A(III) 착물이 $Uo_2$ 소결체의 기공형성과 결정립성장에 미치는 영향(II))

  • 이신영;김형수;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.782-790
    • /
    • 1999
  • The compressibility sinterability sintering behaviour and thermal stability of AlOOH added UO2 pellt and PVA-Al(III) complex added UO2 pellet were investigated respectively. Compared with characteristics of AlOOH added UO2 pellet the green density and the sintered density of PVA-Al(III) complex added UO2 pellet were lowered but the grain size and the pore size of that were more increased in accordance with higher compacting pressure. The AlOOH added UO2 pellet had the grain size of about 14${\mu}{\textrm}{m}$ with monomodal pore size distribution while the PVA-Al(III) complex added UO2 pellet had the grain size of about 42 ${\mu}{\textrm}{m}$ with bimodal pore size distribution. The PVA-A(III) complex added UO2 pellet had a similiar open porosity to the AlOOH added UO2 pellet and a lower resintered density change than the AlOOH added UO2 pellet.

  • PDF

The Conceptual Design of a Hybrid $UO_2$-MOX Pellet

  • Shin, Ho-Cheol;Bae, Sung-Man;Kim, Yong-Bae;Lee, Sang-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.45-50
    • /
    • 1997
  • The conventional MOX fuel shows adverse controllability in view of its neutronic characteristics such as decreased soluble boron worth and effective delayed-neutron fraction compared to the UO$_2$ fuel. In order to mitigate these disadvantages, we devised a new concept of the hybrid UO$_2$-MOX fuel pellet with dual structure such that its outer annular section contains. UO$_2$ fuel and its inner cylindrical bar contains MOX fuel. The lattice physics code HELIOS was used to evaluate the neutronic characteristics of three different types of fuel pellets ; UO$_2$ fuel pellet, MOX fuel pellet, and hybrid UO$_2$-MOX fuel pellet. Results show that the hybrid UO$_2$-MOX fuel pellet generally has intermediate neutronic tendency between UO$_2$ fuel and MOX which could diminish the problems arising from the use of the conventional MOX fuel.

  • PDF

The Comparison of Sintering Characteristics between the PVA-Al(III) Complex added $UO_2$Pellet and AlOOH added $UO_2$pellet (PVA-Al(III) 착물 첨가 $UO_2$소결체와 AlOOH 첨가 $UO_2$소결체의 소결 특성 비교)

  • Lee, Sin-Yeong;Yu, Ho-Sik;Lee, Seung-Jae;Kim, Hyeong-Su;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • The sintering characteristics of PVA-Al(III) complex added $UO_2$ pellet and AlOOH added $UO_2$pellet were compared. The major phase of PVA-Al(III) complex and AlOOH decomposed at $1000^{\circ}C$ in $H_2$atmosphere was $\theta-Al_2O_3$. Compared with the apparent density of pure $UO_2$, that of AlOOH added $UO_2$ powder was higher but that of PVA-Al(III) complex was lower. the densification of AlOOH added $UO_2$ pellet was initiated at about $800^{\circ}C$, the densification of PVA-Al(III) complex added $UO_2$ pellet was initiated at about $900^{\circ}C$ respectively. In a view of pore size distribution, the PVA-Al(III) complex added $UO_2$ pellet appeared as monomodal type, whereas the AlOOH added $UO_2$ pellet appeared as bimodal type. The grain size of AlOOH added $UO_2$ pellet was about $13\mu\textrm{m}$ but the grain size of PVA-Al(III) complex added $UO_2$ pellet was increased up to about $36\mu\textrm{m}$.

  • PDF

Effect of the Addition of Aluminium Distearate on Manufacturing of $UO_2$ Nuclear Fuel (Aluminium Distearate 첨가가 $UO_2$ 핵연료 제조에 미치는 영향)

  • 박지연;정충환;김영석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.609-616
    • /
    • 1992
  • This study has been investigated on the milling of Aluminium Distearate (ADS) powder and characteristics of the ADS-doped UO2 pellets. As-received ADS powder of the agglomerated particles has not shown any milling effect because of heat generated during planetary milling. But the use of coolant to effectively remove heat generated during milling has been found an effective way in breaking up the agglomerates of ADS powder. The green density of the UO2 pellet decreases with the amount of ADS powder doped. Therefore, in order to get the sintered density of 95% pellet decreases with the amount of ADS powder doped. Therefore, in order to get the sintered density of 95% theoretical density, the 200 ppm ADS-doped UO2 pellet has to be pressed under higher compacting pressure of 3500~4000 kgf/$\textrm{cm}^2$ compared with the ADS-undoped UO2 pellet pressed under around 3000 kgf/$\textrm{cm}^2$. The ADS-dpoed UO2 pellet with even relatively low sintered density of 10.27 g/㎤ exhibits open porosity of 1% while open porosity of the ADS-undoped UO2 pellet is reduced to around 1% only after its sintered density increases to 10.43g/㎤. It is, therefore, concluded that doping of ADS powder significantly contributes to the decrease in open porosity of the UO2 pellet. The dilatometry of the ADS doped UO2 pellet shows the sintering rate curve with the bimodal mode, which could be attributed to a phase reaction between UO2 and ADS. The X-ray diffraction analysis indicates that there occurs not any new phase formed but the shift of the peaks. It would be expected that a phase reaction resulting in solid solution would happen in the temperature range of 130$0^{\circ}C$ to 150$0^{\circ}C$ between UO2 and ADS.

  • PDF

Development status of microcell UO2 pellet for accident-tolerant fuel

  • Kim, Dong-Joo;Kim, Keon Sik;Kim, Dong Seok;Oh, Jang Soo;Kim, Jong Hun;Yang, Jae Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.253-258
    • /
    • 2018
  • A microcell $UO_2$ pellet, as an accident-tolerant fuel pellet, is being developed to enhance the accident tolerance of nuclear fuels under accident conditions as well as the fuel performance under normal operation conditions. Improved capture-ability for highly radioactive and corrosive fission product (Cs and I) is the distinct feature of a ceramic microcell $UO_2$ pellet, and the enhanced pellet thermal conductivity is that of a metallic microcell $UO_2$ pellet. The fuel temperature can be effectively decreased by enhanced thermal conductivity. In this study, the material concepts of metallic and ceramic microcell $UO_2$ pellets were designed, and the fabrication process of microcell $UO_2$ pellets embodying the designed concept was developed. We successfully implemented the microcell $UO_2$ pellets and produced microcell $UO_2$ pellets. In addition, an assessment of the out-of-pile properties of a microcell $UO_2$ pellet was performed, and the in-reactor performance and behavior of the developed microcell pellets were evaluated through a Halden irradiation test. According to the expectations, the excellent performance of the microcell $UO_2$ pellets was confirmed by the online measurement data of the Halden irradiation test.

Effects of Additives on the Characteristics and Microstructure of $UO_2$ Pellet ($UO_2$ 소결체의 특성 및 미세구조에 미치는 첨가제의 영향)

  • 유호식;이신영;이승재;강권호;김형수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.660-664
    • /
    • 2000
  • Effect of various kinds of additive such as AlOOH, Al(OH)3, Al2Si2O5(OH)4, Nb2O5, TiO2 and MgO on the properties and microstructures of UO2 pellet has been examined. All the tested dopants had played a role to reduce sintered density and open porosity. It was revealed that the addition of TiO2 made pellet more stable thermally. UO2 pellet doped with 0.2wt% TiO2 was swelled rather than densified after annealing for 24 hrs at 1$700^{\circ}C$. It was attributed to large pore with spherical shape. Titinia and silicon coexisted with Al element were more effective to increase grain size than other additives. It could be also revealed that the formation of liquid phase was the main cause of grain growth.

  • PDF

The Effect of PVA-Al(III) Complex on the Pore Formation and Grain Growth of UO$_2$ Sintered Pellet (PVA-Al(III) 착물이 UO$_2$ 소결체의 기공형성과 결정립성장에 미치는 영향(I))

  • 이신영;김형수;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.783-790
    • /
    • 1998
  • The characterization of the complexation reaction of PVA and Al(III) ion at different pH and the sint-ering behaviour of UO2 containing the PVA-Al(III) complexes were investigated. Compared with pure PVA powder the complexed PVA-Al(III) powder had compacter shape and lower decomposition temperature The major phase of PVA-Al(III) complex decomposed at 90$0^{\circ}C$ was $\alpha$-Al2O3 The PVA-Al(III) complex formed at pH 9 had the lowest relative viscosity the highest Al content of 36% and the smallest particle size of 19${\mu}{\textrm}{m}$ While the pure UO2 pellet appeared with bimodal one. The grain size of the pure UO2 pellet was 7${\mu}{\textrm}{m}$ but that of the PVA-Al(III) complex added UO2 pellet was increased up to 36${\mu}{\textrm}{m}$ The largest grain size was ob-tained when the PVA-Al(III) complex formed at pH9 was added and the PVA-Al(III) complex formed at pH 11 had the greatest effect on increasing pore size.

  • PDF

Leaching Mechanism and Modelling of U$O_2$ Pellets (U$O_2$ Pellet의 침출거동 및 Modelling)

  • Chang, Kil-Sang;Chun, Kwan-Sik;Park, Hyun-Soo;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.155-164
    • /
    • 1988
  • A rate equation for UO$_2$ pellet leaching has been derived and compared with some experimental results. The leach rate model comprises the processes of oxygen penetration into UO$_2$ pellets and the dissolution and transport of oxidized UO$_2$ depending on the penetration depth of oxygen. The model may be analyzed with two regions of transient and steady state behaviors, which should depend on the initial oxidation state of pellets. Also this model can be utilized in the analyses of general leach processes if the oxidation reaction of UO$_2$ is replaced with similar mechanism of those processes.

  • PDF

Effect of UO2+x Powders Produced at Different Oxidation Temperatures on the Properties of Pellet

  • Yoo, Ho-Sik;Lee, Seung-Jae;Kim, Jae-Ik;Song, Kun-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.410-414
    • /
    • 2003
  • Characteristics of $UO_{2+x}$ powders oxidized at different temperatures were examined. Pellets were fabricated by adding these oxidation powders and their properties were also investigated. Particle size of the $UO_{2+x}$ powders decreased with increasing oxidation temperature while surface area increased. Only the powders oxidized at 35$0^{\circ}C$ enhanced the strength of green pellet. However, 35$0^{\circ}C$ oxidized powders added pellet had many surface defects. The difference of shrinkage rate between the oxidized and UO$_2$ powders was thought to be the cause of them.

KINETIC MODELING STUDY OF A VOLOXIDATION FOR THE PRODUCTION OF U3O8 POWDER FROM A UO2 PELLET

  • Jeong, Sang-Mun;Hur, Jin-Mok;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1073-1078
    • /
    • 2009
  • A kinetic model for the oxidation of a $UO_2$ pellet to $U_3O_8$ powder has been suggested by considering the mass transfer and the diffusion of oxygen molecules. The kinetic parameters were estimated by a fitting of the experimental data. The activation energies for the chemical reaction and the product layer diffusion were calculated from the kinetic model. The oxidation conversion of a $UO_2$ pellet was simulated at various operating conditions. The suggested model explains the oxidation behavior of $UO_2$ well.