• Title/Summary/Keyword: $TiO_2-SiO_2$

Search Result 1,732, Processing Time 0.032 seconds

The effect of post-annealing temperature on $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films deposited by RF magnetron sputtering (RF magnetron sputtering법에 의한 BLT 박막의 후열처리 온도에 관한 영향)

  • Lee, Ki-Se;Lee, Kyu-Il;Park, Young;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.624-627
    • /
    • 2003
  • The BLT thin-films were one of the promising ferroelectric materials with a good leakage current and degradation behavior on Pt electrode. The BLT target was sintered at $1100^{\circ}C$ for 4 hours at the air ambient. $Bi_{3.25}La_{0.75}Ti_3O_{12}$ (BLT) thin-film deposited on $Pt/Ti/SIO_2/Si$ wafer by rf magnetron sputtering method. At annealed $700^{\circ}C$, (117) and (006) peaks appeared the high intensity. The hysteresis loop of the BLT thin films showed that the remanent polarization ($2Pr=Pr^+-Pr^-$) was $16uC/cm^2$ and leakage current density was $1.8{\times}10^{-9}A/cm^2$ at 50 kV/cm with coersive electric field when BLT thin-films were annealed at $700^{\circ}C$. Also, the thin film showed fatigue property at least up to $10^{10}$ switching bipolar pulse cycles under 7 V. Therefore, we induce access to optimum fabrication condition of memory device application by rf-magnetron sputtering method in this report.

  • PDF

The Magnetic Properties of Fe-Hf-C Soft Magnetic Thin Films (Fe-Hf-C계 연자성 박막합금의 자기적 성질)

  • 최정옥;이정중;한석희;김희중;강일구
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1993
  • Thin films of soft magnetic Fe-Hf-C alloys with nanoscale crystallites were investigated in this study. The films were fabricated by an RF diode magnetron sputtering apparatus and subsequently annealed in vacuum. The soft magnetic properties of the films were observed to differ depending on the different substrates such as Corning 7059, $CaTiO_3$ and $Al_2O_3-TiC$ with various underlayer(Cr, $SiO_2$) thickness. This results may be due to the interdiffusion between the substrate and the magnetic layer and/or between the underlayer and the magnetic layer, rather than the microstructural change such as grain size. The Fe-Hf-C films with high permeability up to 4000(at 1 MHz) and saturation magnetization up to 16 kG were obtained in the vicinity of phase boundary between the crystalline and amorphous state when the size of ${\alpha}-Fe$ grains is about 5 nm. And also the films were found to have thermal stability up to $600^{\circ}C$.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Geochemistry and Metamorphism of the Amphibolite in the Odesan Gneiss Complex (오대산편마암복합체내에 산출되는 앰피볼라이트의 지화학적 특성과 변성작용)

  • 권용완
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.111-131
    • /
    • 1998
  • The migmatitic gneiss in the Odesan Gneiss Complex has small amount of quartzite, amphibolite and marble and the Kuryong Group which contact with migmatitic gneiss unconformitly, also contains some amphibolite. Preview studies of this area had regarded that the amphibolites contact with marble had been produced by metasomatism from the pelitic and calcareous sediments mixtures, but the amphibolite is reinterpreted as igneous origin. $SiO_2$ content of the amphibolite is 45.9~52.7 wt%, which corresponds to basaltic composition. MgO content has narrow range (4.6~6.87 wt%) and major and trace element are plotted against MgO,$TiO_2, P_2O_5$, Hf, Zr are reduced and Cr and Ni are increased their content with increasing MgO. This phenomenon indicates that the basaltic magma as the protolith of the amphibolite had frationated with the crystallization of the pyroxene and/or olivine. REE pattern has smoothly decrease from LREE to HREE. Eu/Eu(0.83~1.19) show the flat Eu anomaly, which indicate small fractional crystallization of plagioclase. HREE is enriched in the garnet-bearing amphibolites. Several discrimination diagram for the basaltic magma show that the amphibolite of the study area is originated tholeiitic basaltic magma indicating continental rift environment. Due to determine the metamorphic condition garnet-hornblende geothermometry and hornblende-plagioclase geobarometry are used. Peak metamorphic temperature range of the amphibolite $788~870^{\circ}C$ and is deduced toward the northeastern part. The calculated temperature from the amphibolite has slightly higher than the temperature of the metapelites but the trend of metamorphic grade which decrease from western to eastern part progradly is similar to each other. The metamorphic pressure calculated by garnet- hornblede-plagioclase geobarometry is 4~5kb. But ilmenite-plagioclase pair enclosed in garnet show 8 kb at $700^{\circ}C$ by garnet-ilmenite-rutile-plagioclase geobarometery. The zonal profile of garnet in sample 84 shows the bell-shape profile, which grossular content decreases whereas pyrope content increases progressively. This means that the amphibolite has undergone the clockwise P-T-t path which is shown in the migmatitic gneiss of the Odesan Gneiss Complex.

  • PDF

Characteristics of Ta-Ti alloy Metal for NMOS Gate Electrodes (NMOS 게이트 전극에 사용될 Ta-Ti 합금의 특성)

  • Kang, Young-Sub;Lee, Chung-Keun;Kim, Jae-Young;Hong, Shin-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.15-18
    • /
    • 2003
  • Ta-Ti metal alloy is proposed for alternate gate electrode of ULSI MOS device. Ta-Ti alloy was deposited directly on $SiO_2$ by a co-sputtering method and good interface property was obtained. The sputtering power of each metal target was 100W. Thermal and chemical stability of the electrode was studied by annealing at $500^{\circ}C$ and $600^{\circ}C$ in Ar ambient. X-ray diffraction was measured to study interface reaction and EDX(energy dispersive X-ray) measurement was performed to investigate composition of Ta and Ti element. Electrical properties were evaluated on MOS capacitor, which indicated that the work function of Ta-Ti metal alloy was ${\sim}4.1eV$ compatible with NMOS devices. The measured sheet resistance of alloy was lower than that of poly silicon.

  • PDF

Solution-processible corrugated structure and scattering layer for enhanced light extraction from organic light-emitting diodes

  • Hyun, Woo Jin;Im, Sang Hyuk;Park, O Ok;Chin, Byung Doo
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.151-157
    • /
    • 2012
  • A simple method of fabricating out-coupling structures was demonstrated via solution-processing to enhance light extraction from organic light-emitting diodes (OLEDs). Scattering layers were easily obtained by spin-coating an $SiO_2$ sol solution that contained $TiO_2$ particles. By introducing the scattering layer and the solution-processible corrugated structure as internal and external extraction layers, the OLEDs showed increased external quantum efficiency without a change in the electroluminescence spectrum compared to conventional devices. Using these solution-processible out-coupling structures, nearly all-solution-processed OLEDs with enhanced light extraction could be fabricated. The light extraction enhancement is attributed to the suppression by the out-coupling structures of the light-trapping that arose at the interface of the glass substrate and the air.

HIGH TEMPERATURE SUPERCONDUCTING THIN FILMS PREP ARED BY PULSED LASER DEPOSITION

  • Park, Yong-Ki;Kim, In-Seon;Ha, Dong-Han;Hwang, Doo-Sup;Huh, Yun-Sung;Park, Jong-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.430-436
    • /
    • 1996
  • We have grown superconducting thin films on various substrates using a pulsed laser deposition (PLD) method. $YBa_2Cu_3O_7-\delta$ (YBCO) superconducting thin films with the superconducting transition temperature ($T_{c. offset}$) of 87K were grown on Si substrates using yittria-stabilized zirconia (YSZ) and $CeO_2$ double buffer layers. We have developed a large area pulsed laser deposition system. The system was designed to deposit up to 6 different materials on a large area substrate up to 7.5cm in diameter without breaking a vacuum. The preliminary runs of the deposition of YBCO superconducting thin films on $SrTiO_3$ substrate using this system showed a very uniform thickness profile over the entire substrate holder area. $T_{c}$ of the deposited YBCO thin film, however, was scattered depending on the position and the highest value was 85K.

  • PDF

EFFECT OF ELECTROLYTE CONCENTRATION ON THE SURFACE CHARACTERISTICS OF ANODIZED AND HYDROTHERMALLY-TREATED TI-6AL-7NB ALLOY (전해질 농도가 양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성에 미치는 영향)

  • Jang Tae-Yeob;Song Kwang-Yeob;Bae Tae-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.684-693
    • /
    • 2005
  • Statement of problem: Ti-6Al-7Nb alloy is used instead of Ti-6Al-4V alloy that was known to have toxicity. Purpose: This study was performed to investigate the effect of electrolyte concentration on the surface characteristics of anodized and hydrothermally-treated Ti-6Al-7Nb alloy Materials and methods: Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1,000 SiC paper ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed at current density $30mA/cm^2$ up to 300 V in electrolyte solutions containing $\beta-glycerophosphate$ disodium salt hydrate $(\beta-GP)$ and calcium acetate (CA). Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. All samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. Results and conclusion: The results obtained were summarized as follows: 1. After hydrothermal treatment, the precipitated HA crystals showed the dense fine needle shape. However, with increasing the concentration of electrolyte they showed the shape of thick and short rod. 2. When the dense fine needle shape crystals was appeared after hydrothermal treatment, the precipitation of HA crystals in Hanks' solution was highly accelerated. 3. The crystal structures of $TiO_2$ in anodic oxide film were composed of strong anatase peak and weak rutile peak as analyzed with thin-film X-ray diffractometery. 4. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal in Hanks' solution.

a-Si:H TFT Using Ferroelectrics as a Gate Insulator

  • Hur, Chang-Wu;Kung Sung;Jung-Soo, Youk;Sangook Moon;Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The a-Si:H TFT using ferroelectric of SrTi $O_3$as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric are superior to $SiO_2$and S $i_3$ $N_4$. Ferroelctric increases on-current, decreases thresh old voltage of TFT and also improves breakdown characteristics. The a-SiN:H has optical band gap of 2.61 eV, refractive index of 1.8~2.0 and resistivity of 10$^{13}$ - 10$^{15}$ $\Omega$cm, respectively. Insulating characteristics of ferroelectrics are excellent because dielectric constant of ferroelectric is about 60~100 and breakdown strength is over 1MV/cm. TFT using ferroelectric has channel length of 8~20${\mu}{\textrm}{m}$ and channel width of 80~200${\mu}{\textrm}{m}$. And it shows that drain current is 3.4$mutextrm{A}$ at 20 gate voltage, $I_{on}$ / $I_{off}$ is a ratio of 10$^{5}$ - 10$^{8}$ and $V_{th}$ is 4~5 volts, respectively. In the case of TFT without ferroelectric, it indicates that the drain current is 1.5 $mutextrm{A}$ at 20 gate voltage and $V_{th}$ is 5~6 volts. With the improvement of the ferroelectric thin film properties, the performance of TFT using this ferroelectric has advanced as a gate insulator fabrication technology is realized.zed.d.

  • PDF

Cavitation damage characteristics of plasma electrolytic oxidation coatings prepared on marine grade Al alloy (플라즈마 전해 산화 처리된 해양환경용 Al 합금의 캐비테이션 손상 특성)

  • Lee, Jeong-Hyeong;Kim, Yong-Hwan;Kim, Yeon-Ju;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.132.2-132.2
    • /
    • 2017
  • 플라즈마 전해 산화(Plasma Electrolytic Oxidation, PEO)는 Al, Ti, Mg 합금과 같은 경량 금속소재에 대한 표면처리기술로서 주목을 받고 있다. PEO 처리에 의해 표면에 치밀하게 형성되는 세라믹 산화층은 우수한 내식성, 내마모성을 보유하기 때문에, 이와 같은 특성이 요구되는 분야에 적용하기 위한 연구가 활발하다. 특히 PEO 세라믹 코팅층의 응착마모(adhesive wear)와 절삭마모(abrasive wear)에 관한 연구는 상당부분 이루어지고 있으나, 캐비테이션 침식과 같은 침식마모(erosive wear) 특성에 관한 연구는 부족한 실정이다. 본 연구에서는 알루미늄 합금 소지에 제작된 PEO 코팅층의 캐비테이션 손상 특성을 고찰하였으며, 전해액 조성이 PEO 코팅층의 미세조직과 캐비테이션 손상 특성에 미치는 영향을 살펴보았다. PEO 처리를 위해 사용된 소재는 상용 5083-O합금 판재로서 $2cm{\times}2cm$로 절단하여, 에머리페이퍼로 1000번까지 연마하여 사용하였다. 사용된 전해액은 증류수에 KOH(1 g/L)을 base로 하여 $Na_2SiO_3$(2 g/L)의 첨가유무를 변수로 하였다. 시편을 양극으로 하고 STS304를 음극으로 하여 각각 DC 전원 공급기의 +극과 -극에 연결하였으며, 정전류 조건에서 30분간 $0.1A/cm^2$의 전류밀도를 인가하였다. PEO 처리후 시편은 SEM, EDS, XRD를 이용하여 표면 특성 평가를 실시하였다. PEO코팅층의 캐비테이션 특성 평가는 초음파 진동식 캐비테이션 발생 장치를 이용하였으며, 캐비테이션 실험 후 시간에 따른 표면 거칠기의 변화 거동을 분석하였다.

  • PDF