• 제목/요약/키워드: $TiO_2$ nanowire

Search Result 35, Processing Time 0.029 seconds

Fabrication of TiO2 Nanowires Using Vapor-Liquid-Solid Process for the Osseointegration (골융합을 위한 Vapor-Liquid-Solid 법을 이용한 TiO2 나노와이어의 합성)

  • Yun, Young-Sik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.204-210
    • /
    • 2013
  • In order to improve osseointegration for biomedical implants, it is crucial to understand the interactions between nanostructured surfaces and cells. In this study, $TiO_2$ nanowires were prepared via Vapor-Liquid-Solid (VLS) process with Sn as a metal catalyst in the tube furnace. Nanowires were grown with $N_2$ heat treatment with their size controlled by the agglomeration of Sn layers in various thicknesses. MC3T3-E1 (pre-osteoblast) were cultured on the $TiO_2$ nanowires for a week. Preliminary results of the cell culture showed that the cells adhere well on the $TiO_2$ nanowires.

Properties of Cement Mortar with Graphene-Titanium Dioxide Composite Nanowires (그래핀-이산화티탄 복합 나노와이어를 혼입한 모르타르의 물성 평가)

  • Lee, Jun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.118-119
    • /
    • 2021
  • The properties of cement mortar with graphene-titanium dioxide composite nanowires (TiO2(G)NW) were investigated in this study. The following tests were conducted with the cement mortar : (1) setting times (2) Flow test of fresh cement mortar, (3) compressive strength and (4) acetaldehyde removal efficiency under visible light. As the increase of TiO2(G) NW, the flow value of cement mortar was decreased and the setting times of cement mortar were faster. The compressive strength and the acetaldehyde removal efficiency were increased by the increase of TiO2(G) NW.

  • PDF

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Silver Nanowire-Based Stretchable Transparent Electrodes for Deformable Organic Light-Emitting Diodes (신축성 유기발광다이오드를 위한 은 나노와이어 기반의 신축성 투명 전극 기판 연구)

  • Jung, Hyunsu;Go, Hyeck;Park, Gye-Choon;Yun, Changhun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.609-614
    • /
    • 2017
  • The proposed stretchable transparent electrodes based on silver nanowires (AgNWs) were prepared on a polyurethane (PU) substrate. In order toavoid the surface roughness caused by the silver nanowires, a titanium oxide ($TiO_2$) buffer layer was addedby coating and heating the organometallic sol-gel solution. The fabricated stretchable electrodes showedan electrical sheet resistance of $24{\Omega}sq^{-1}$, 78% transmittance at 550 nm, and an average surface roughness below 5 nm. Furthermore, the AgNW-based electrode maintained its initial electrical resistance under 130% strain testing conditions, without the assistance of additional conductive polymer layers. In this paper, the critical role of the $TiO_2$ buffer layer between the AgNW network and the PU substrate has been discussed.

Probing Polarization Modes of Ag Nanowires with Hot Electron Detection on $Au/TiO_2$ Nanodiodes

  • Lee, Young Keun;Lee, Jaemin;Lee, Hyosun;Lee, Jung-Yong;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.225-225
    • /
    • 2013
  • Nanostructured noble metals have been attractive for their unusual optical properties and are widely utilized for various purposes. The optical properties mainly originating from collective electron oscillation can assist direct energy conversion via surface plasmon resonances. Here, we investigated the effect of surface plasmons of silver nanowires on the generation of hot electrons. It is reported that the surface plasmons of silver nanowires exhibit longitudinal and transverse modes, depending on the aspect ratio of the nanowires. In order to measure the hot electron flow through the metallic nanowires, chemically modified Au/TiO2 Schottky diodes were employed as the electric contact. The silver nanowires were deposited on a Au metal layer via the spray method to control uniformity and the amount of silver nanowire deposited. We measured the hot electron flow generated by photon absorption on the silver nanowires deposited on the Au/TiO2 Schottky diodes. The incident photon-to-current efficiency was measured a function of the photon energy, revealing two polarization modes of siliver nanowires: transverse and longitudinal modes. UV-Vis spectra exhibited two polarization modes, which are also consistent with the photocurrent measurements. Good correlation between the IPCE and UV-vis measurements suggests that hot electron measurement on nanowires on nanodiodes is a useful way to reveal the intrinsic properties of surface plasmons of nanowires.

  • PDF

Electrical properties of metal doped $V_2O_5$ nanowires (금속으로 도핑 된 $V_2O_5$ nanowires의 전기적 특성)

  • Ryu, Hye-Yeon;Yee, Seong-Min;Kang, Pil-Soo;Kim, Gyu-Tae;Zakharova, O.S.;Volkov, V.L.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.101-102
    • /
    • 2006
  • 금속을 도핑 함으로써 전기전도도가 향상될 것으로 생각되는 산화바나듐 나노선에 대하여 열처리 전후의 전기적 특성을 비교하였다. sol-gel 방법으로 만들어진 산화바나듐 xerogel($V_{1.66}Mo_{0.33}O_5{\cdot}nH_2O$)을 $Si_3N_4$ 절연막이 성장된 Si기판위에 분산시키고 Ti/Au으로 전극을 증착한 후 열처리 한 것과 하지 않은 두 시료의 전류-전압특성을 비교 분석하였다.

  • PDF

Transparent TIO/Ag NW/TIO Hybrid Electrode Grown on PET for Flexible Organic Solar Cell

  • Seo, Ki-Won;Lee, Ju-Hyun;Na, Seok-In;Kim, Han-ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.394.2-394.2
    • /
    • 2014
  • We fabricated highly transparent and flexible Ti doped In2O3 (TIO)/Ag nanowire(NW)/TIO (TAT) multilayer electrodes by linear facing target sputtering (LFTS) and brush-painting for used as flexible for anode organic solar cells(FOSCs). The characteristics of TAT transparent anode as a function of number of brush-painting cycles was also investigated. At optimized conditions we achieved highly flexible TAT multilayer electrodes with a low sheet resistance of $9.01{\Omega}/square$ and a high diffusive transmittance more than 80% in visible region as well as superior mechanical stability. The effective embedment of the Ag NW network between top and bottom TIO films led to a metallic conductivity, high transparency. Based on FE-SEM HRTEM, and XRD analysis, we can find that the Ag NW network was effectively embedded between top and bottom TIO layers due to good flexibility of Ag NW, the TAT multilayer showed superior flexibility than single TIO layer. Successful operation of FOSCs with high power conversion efficiency of 3.01% indicates that TAT hybrid electrode is a promising alternative to conventional ITO electrode for high performance FOSCs.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

수열합성법에 의해 성장된 ZnO 나노와이어의 성장제어 및 특성연구

  • Kim, Jong-Hyeon;Kim, Seong-Hyeon;Jo, Jin-U;Lee, Seong-Hwa;Jeong, Dae-Yong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • 수열합성법으로 제작된 ZnO 나노와이어는 저온 MBE (Molecular Beam Epitaxy) 방식과 달리 Ti, Au와 같은 촉매로 부터 성장이 끝난뒤 나노와이어 끝에 남는 촉매를 제거해야할 필요가 없으며, 저온에서 합성이 가능하기 때문에 현재 연구가 많이 되고 있는 방법중에 하나이다. 본 연구에서는 수열 합성법을 이용하여 금속촉매 또는 AZO로 seed를 형성한 후 기판 위에 균일한 크기의 ZnO 나노막대를 성장시키고 성장밀도 및 길이의 간편한 제어를 하였다. 이를 위해 계면활성제인 PEI (Polyethyleneimine) 첨가 및 Chloride ($Cl_-$)를 조절하여 ZnO 나노와어의 성장밀도를 조절 하고자 하였다. 실험방법으로는 전구체인 Zn(NO3)2${\cdot}$6H2O와 HMT에 Chloride 계열인 Ammonium chloride 와 Kcl 의 몰농도를 각각 조절하고 PEI를 첨가하여, ZnO 나노와이어를 성장하였다. 성장된 ZnO 나노와이어의 특성을 평가하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 광학적인 특성을 측정하였으며, 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 또한 scanning PL 장비를 통해 photoluminescence양을 측정하고 ZnO 나노와이어의 응용 가능성을 평가하였다.

  • PDF