• Title/Summary/Keyword: $TiO_2$ hollow nanoparticles

Search Result 4, Processing Time 0.023 seconds

Enhancement of Photoelectric Efficiency in a Dye-sensitized Solar Cell Using Hollow TiO2 Nanoparticles as an Overlayer

  • Lee, Kyoung-No;Kim, Woo-Byoung;Lee, Caroline Sunyong;Lee, Jai-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1853-1856
    • /
    • 2013
  • $TiO_2$ hollow nanoparticles (HNPs) and their light scattering effect which influences on the photoelectric conversion efficiency of a dye-sensitized solar cell (DSSC) were investigated. When only HNPs were employed in DSSC as the anode layer material, the conversion efficiency (e.g., 0.96%) was the lowest, possibly due to scattering loss of incident light. However, DSSC fabricated by using HNPs as a scattering overlayer on the $TiO_2$ nanoparticles (P-25), showed higher conversion efficiency (4.02%) than that without using HNPs (3.36%).

Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites (Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가)

  • Lee, In-Ho;Kwen, Hai-Doo;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by $TiO_2$-hollow sphere prepared for use in sensor applications or fuel cells. The $TiO_2$-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the $Pt^{4+}$ and $Ru^{3+}$ ions onto $TiO_2$-hollow sphere ($Pt-Ru@TiO_2-H$). The prepared $Pt-Ru@TiO_2-H$ nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol, methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the $Pt-Ru@TiO_2-H$ nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto $TiO_2$-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.

Behavior of NOM Fouling in Submerged Photocatalytic Membrane Reactor Combined with $TiO_2$ Nanoparticles ($TiO_2$ 나노입자/UV 결합 침지형 중공사막 시스템에서 자연유기물의 파울링거동)

  • Park, Seung-Soo;Seo, Hyung-Jun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.46-54
    • /
    • 2011
  • In this study, combined effect of airflow rate, $TiO_2$ concentration, solution pH and $Ca^{+2}$ addition on HA (humic acid) fouling in submerged, photocatalytic hollow-fiber microfiltraiton was investigated systematically. Results showed that UV irradiation alone without $TiO_2$ nanoparticles could reduce HA fouling by 40% higher than the fouling obtained without UV irradiation. Compared to the HA fouling without UV irradiation and $TiO_2$ nanoparticles, the HA fouling reduction was about 25% higher only after the addition of $TiO_2$ nanoparticles. Both adsorptive and hydrophilic properties of $TiO_2$ nanoparticles for the HA can be involved in mitigating membrane fouling. It was also found that the aeration itself had lowest effect on fouling mitigation while the HA fouling was affected significantly by solution pH. Transient behavior of zeta potential at different solution pHs suggested that electrostatic interactions between HA and $TiO_2$ nanoparticles should improve photocatalytic efficiency on HA fouling. $TiO_2$ concentration was observed to be more important factor than airflow rate to reduce HA fouling, implying that surface reactivity on $TiO_2$ naoparticles should be important fouling mitigation mechanisms in submerged, photocatalyic microfiltraiton. This was further supported by investigating the effect of $Ca^{+2}$ addition on fouling mitigation. At higher pH (= 10), addition of $Ca^{+2}$ can play an important role in bridging between HA and $TiO_2$ nanoparticles and increasing surface reactivity on nanoparticles, thereby reducing membrane fouling.