• 제목/요약/키워드: $TiO_2$ Thickness

검색결과 672건 처리시간 0.019초

『이충무공전서』 정고본의 지질분석과 보존처리 (Material Properties and Conservation of 『Collection of Yi Chungmugong』 in Manuscript)

  • 임세연;안지윤;양민정
    • 헤리티지:역사와 과학
    • /
    • 제51권4호
    • /
    • pp.108-119
    • /
    • 2018
  • "이충무공전서" 정고본은 1795년 간행된 이충무공전서 1책에 해당하는 부분을 수기(手記)한 것으로 인쇄하기 전 초고(草稿)를 마지막으로 수정해 내용을 완전하게 한 판본으로 추정된다. 책의 형태는 오침안정법(五針眼訂法)의 선장본 형식으로 되어 있으며, 책 하단부분의 습해로 인한 얼룩, 결실, 산화 등 손상으로 보존처리가 시급하였다. 또한 과학적 조사 및 분석을 통해 지질과 섬유의 특성을 밝히고, 보존처리 과정에 반영될 수 있도록 하였다. 종이의 크기(cm), 두께(mm), 무게(g), 평량($g/m^2$), 밀도($g/cm^3$), 발 끈 간격 및 초 수($3{\times}3cm$) 측정 등 지질 조사를 실시하였다. 지질 조사 결과 조선시대 후기 왕실 발행 도서에 이용된 종이 특징을 추정할 수 있었다. 표지, 책지 등의 종이 섬유를 C염색법으로 분석한 결과 닥 인피섬유인 것으로 확인되었고, 장정된 끈은 면(棉) 재질로 확인되었다. 종이에 포함된 첨가물 유무를 확인하기 위해 SEM-EDS 분석을 실시한 결과 주성분인 탄소(C)와 산소(O) 외에 결정화 된 칼슘(Ca) 성분이 검출되었다. 본 유물은 "이충무공전서"의 정고본으로 전해지는 유일한 책으로 학술적 가치가 높으며, 정확한 시대와 발행 기관에 대한 정보가 수록되어 있어 고전적의 인쇄과정을 추측할 수 있다. 또한 본 연구를 통해 전적류 문화재의 보존 및 복원을 위한 기초자료로써 활용될 수 있을 것으로 기대한다.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제12권7호
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF