• Title/Summary/Keyword: $Ti/RuO_2$

Search Result 147, Processing Time 0.032 seconds

전도성 세라믹인 티타늄 아산화물 TiO와 $Ti_4O_{7}$의 산화전극으로서의 전기화학적 특성

  • Park, So-Yeong;Kim, Cheol;Mo, Seon-Il;Ji, Eun-Ok;Kwon, Yeong-Uk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.121-125
    • /
    • 1994
  • 전극물질 및 전극촉매로서의 세라믹물질의 중요성은 상당히 크다. magneli phase를 갖는 $Ti_4O_{7}$과 rock salt구조를 갖는 TiO등의 티타늄 아산화물들은 전도성 세라믹으로서 전기전도도는 탄소보다도 좋으며, 높은 산화전위에서도 산화되지 않을 뿐만아니라, 강산용액에서도 내식성이 강하여 $SO_2$$O_2$의 산화전극 물질로 사용할 수 있다. $SO_2$$O_2$의 산화에 뛰어난 활동도를 보이는 촉매인 Pt나 Ru를 전기화학적으로 $Ti_4O_{7}$이나 TiO에 입혀서 그 전기화학적인 특성을 조사하였다.

  • PDF

Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell (MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.340-347
    • /
    • 2022
  • In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

Interaction between RuO2 and Carbon Nanotubes - Photoemission and X-ray Absorption Study

  • Lee, Seung-Youb;Kim, Yoo-Seok;Jeon, Chel-Ho;Ihm, Kyu-Wook;Kang, Tai-Hee;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.567-567
    • /
    • 2012
  • Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. $RuO_2$ coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and $RuO_2$ was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of $RuO_2$/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES). The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. $RuO_2$ of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited $RuO_2$ on the CNTs was reduced into pure Ru at above $300^{\circ}C$. And we confirmed that the effective work function of $RuO_2$/CNTs was decreased with increasing temperature.

  • PDF

Magnetic and Microwave Absorbing Properties of M-type Hexagonal Ferrites Substituted by Ru-Co(BaFe12-2xRuxCoxO19) (Ru-Co가 치환된 M-형 육방정 페라이트(BaFe12-2xRuxCoxO19)의 자기적 성질 및 전파흡수 특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.136-141
    • /
    • 2008
  • In this study, the magnetic(static and high-frequency) and microwave absorbing properties have been investigated in Ru-Co substituted M-hexaferrites($BaFe_{12-2x}Ru_xCo_xO_{19}$). The powders and sintered specimens were prepared by conventional ceramic processing technique. With the calcined powders, the composite specimens were prepared using the silicone rubber as a matrix material. The substitution ratio of Ru-Co to obtain in-plane magnetic anisotropy, thus having the minimum coercivity, is much smaller (about x=0.3) than the previously reported Ti-Co substituted specimen. Owing to this low substitution, the specimen has a large value of saturation magnetization($M_s$=65 emu/g). Ferromagnetic resonance behavior and microwave absorbing frequency band is strongly influnced by the coercvity which can be controlled by Ru-Co substitution ratio. It is found that the M-hexaferrites with planar magnetic anisotropy by doping Ru-Co in both sintered and composite form have superior microwave absorbing properties in GHz frequency range.

Influences of Coating Cycles and Composition on the Properties of Dimensionally Stable Anode for Cathodic Protection

  • Yoo, Y.R.;Chang, H.Y.;Take, S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Properties of the anode for cathodic protection need low overvoltage for oxygen evolution and high corrosion resistance. It is well known that DSA (Dimensionally Stable Anode) has been the best anode ever since. DSA is mainly composed of $RuO_2$, $IrO_2$, $ZrO_2$, $Co_2O_3$, and also $Ta_2O_5$, $TiO_2$, $MnO_2$ are added to DSA for better corrosion resistance. The lifetime of DSA for cathodic protection is also one of the very important factors. $RuO_2$, $IrO_2$, $RhO_2$, $ZrO_2$ are well used for life extension, and many researches are focused on life extension by lowering oxygen evolution potential and minimizing dissolution of oxide coatings. This work aims to evaluate the influence of constituents of MMO and coating cycles and $ZrO_2$ coating on the electrochemical properties and lifetime of DSA electrodes. From the results of lifetime assessment in the anodes coated with single component, $RuO_2$ coating was more effective and showed longer lifetime than $IrO_2$ coating. Also, an increased coating cycle and an electrochemically coated $ZrO_2$ could enhance the lifetime of a DSA.

Thermal Shock Resistance of $Al_2$TiO$_5$ Ceramics Prepared from Electrofused Powders (전기용융 분말로부터 합성된 $Al_2$TiO$_5$ Ceramics의 열충격 저항성)

  • ;Constantin Zografou
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1061-1069
    • /
    • 1998
  • The thermal instability of Al2TiO5 Ceramics was contrlled by solid solution with MgO SiO2 and ZrO2 through electrofusion in an arc furnace. The thermal expansion properties of Al2TiO5 composites show the hysteresis due to the strong anisotropy of The crystal axes of these material. These phenomena are ex-plained by the opening and closing of microcracks. The difference in microcracking temperatures e.g 587.6(ATG2), 405.9(ATG3) and 519.7$^{\circ}C$(ATG4) is caused by the difference in grain size and stabilizer type. The thermal shock behaviour under cyclic conditions between 750-1400-75$0^{\circ}C$ show no change in mi-crostructure and phase assemblage for all three stabilized specimens. After the thermal loading test at 110$0^{\circ}C$ for 100hrs. ATG1 and ATG2 materials decomposes completely to its components corundum and ru-tile in both cases. However with approximatelly 20% retention of the Al2TiO5 Thus in order to prevent decomposition of the stabilized material in the critical temperature range 800-130$0^{\circ}C$ it must be traversed within a short period of time.

  • PDF

First Principles Calculations on Electronic Structure and Magnetism of Transition Metal Doped ZnO (전이금속이 도핑된 ZnO의 전자구조와 자성에 대한 제일원리계산)

  • Yun, Sun-Young;Cha, Gi-Beom;Hong, Sun-C.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • In this study we investigate the electronic structure and magnetism of transition metal (TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag ) deped ZnO($TM_{0.25}Zn_{0.75}O$), which are expected to have Curie temperature. Full-potential Linearized Augmented Plane Wave(FLAPW) metod is adopted with exchange-correlation potential expressed as general gradient approximation(GGA). The calculated magnetic moments of ($TM_{0.25}Zn_{0.75}O$) are 0.83, 3.03, 4.03, 3.48, 2.47, 1.56, 0.43, 0.75, 0.01 ${\mu}_B$ for TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag, respectively. The nearest neighbor O atom to the transition metal is calculated to have a significant magnetic moment of about 0.1${\mu}_B$, ?? 새 strong hybridization between O-p and TM-d bands. As the results, the systems may have larger magnetic moments in total, compared to the corresponding isolated atoms. The 3d TM doped systems exhibit the half-metallic character except Co, wheres the 4d TM doped systems behave like normal metals and low spin polarization at the Fermi levels.

Preparaton of ECR MOCVD $SrTiO_3$ thin films and their application to a Gbit-scale DRAM stacked capacitor structure

  • Lesaicherre, P-Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.138-144
    • /
    • 1995
  • It is commonly believed that high permittivity materials will be necessary for future high density Gbit DRAMs. In a first part, we explain the choice of SrTiO3 by ECR MOCVD for Gbit-scale DRAMs. In a second part, after describing the ECR MOCVD system and presenting the requirements SrTiO3 thin films should meet for use in Gbit-scale DRAMs, the physical and electrical properties of srTiO3 thi film prepared by ECR MOCVD are then studied. A stacked capacitor technology, suitable for use in 1 Gbit DRAM, and comprising high permittivity SrTiO3 thin films prepared by ECR MOCVD at $450^{\circ}C$ on electron beam and RIE patterned RuO2/TiN storage nodes is finally described.

  • PDF

Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells (염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발)

  • Park, Jeong-Hyun;Kim, Jae-Hong;Ahn, Kwang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF