• Title/Summary/Keyword: $T_1$ and $T_2$ relaxation

Search Result 245, Processing Time 0.03 seconds

Comparison of Proton T1 and T2 Relaxation Times of Cerebral Metabolites between 1.5T and 3.0T MRI using a Phantom (모형을 이용한 1.5T와 3.0T 자기공명에서의 뇌 대사물질들의 수소 T1과 T2 이완시간의 비교)

  • Kim, Ji-Hoon;Chang, Kee-Hyun;Song, In-Chan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • Purpose : To present the T1 and T2 relaxation times of the major cerebral metabolites at 1.5T and 3.0T and compare those between 1.5T and 3.0T. Materials and Methods : Using the phantom containing N-acetyl aspartate (NAA), Choline (Cho), and Creatine (Cr) at both 1.5T and 3.0T MRI, the T1 relaxation times were calculated from the spectral data obtained with 5000 ms repetition time (TR), 20 ms echo time (TE), and 11 different mixing time (TM)s using STEAM (STimulated Echo-Acquisition Mode) method. The T2 relaxation times were obtained from the spectral data obtained with 3000 ms TR and 5 different TEs using PRESS (Point-RESolved Spectroscopy) method. The T1 and T2 relaxation times obtained at 1.5T were compared with those of 3.0T. Results : The T1 relaxation times of NAA were $2293\;{\pm}\;48\;ms$ at 1.5T and $2559\;{\pm}\;124\;ms$ at 3.0T (11.6% increase at 3.0T). The T1 relaxation times of Cho were $2540\;{\pm}\;57\;ms$ at 1.5T and $2644\;{\pm}\;76\;ms$ at 3.0T (4.1% increase at 3.0T). The T1 relaxation times of Cr were $2543\;{\pm}\;75\;ms$ at 1.5T and $2665\;{\pm}\;94\;ms$ at 3.0T (4.8% increase). The T2 relaxation times of NAA were $526\;{\pm}\;81\;ms$ at 1.5T and $468\;{\pm}\;74\;ms$ at 3.0T (11.0% decrease at 3.0T). The T2 relaxation times of Cho were $220\;{\pm}\;44ms$ at 1.5T and $182\;{\pm}\;35\;ms$ at 3.0T (17.3% decrease at 3.0T). The T2 relaxation times of Cr were $289\;{\pm}\;47\;ms$ at 1.5T and $275\;{\pm}\;57\;ms$ at 3.0T (4.8% decrease at 3.0T). Conclusion : The T1 relaxation times of the major cerebral metabolites (NAA, Cr, Cho), which were measured at the phantom, were 4.1%-11.6% longer at 3.0T than at 1.5T. The T2 relaxation times of them were 4.8%-17.3% shorter at 3.0T than at 1.5T. To optimize MR spectroscopy at 3.0T, TR should be lengthened and TE should be shortened.

  • PDF

Effect of Temperature on T1 and T2 Relaxation Time in 3.0T MRI (3.0T MRI에서 온도변화가 T1 및 T2 이완시간에 미치는 영향)

  • Kim, Ho-Hyun;Kwon, Soon-Yong;Lim, Woo-Teak;Kang, Chung-Hwan;Kim, Kyung-Soo;Kim, Soon-Bae;Baek, Moon-Young
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Purpose : The relaxation times of tissue in MRI depend on strength of magnetic field, morphology of nuclear, viscosity, size of molecules and temperature. This study intended to analyze quantitatively that materials' temperatures have effects on T1 and T2 relaxation times without changing of other conditions. Materials and Methods : The equipment was used MAGNETOM SKYRA of 3.0T(SIEMENS, Erlagen, Germany), 32 channel spine coil and Gd-DTPA water concentration phantom. To find out T1 relaxation time, Inversion Recovery Spin Echo sequences were used at 50, 400, 1100, 2500 ms of TI. To find out T2 relaxation time, Multi Echo Spin Echo sequences were used at 30, 60, 90, 120, 150, 180, 210, 240, 270 ms of TE. This experiment was scanned with 5 steps from 25 to $45^{\circ}C$. next, using MRmap(Messroghli, BMC Medical Imaging, 2012) T1 and T2 relaxation times were mapped. on the Piview STAR v5.0(Infinitt, Seoul, Korea) 5 steps were measured as the same ROI, and then mean values were calculated. Correlation between the temperatures and relaxation times were analyzed by SPSS(version 17.0, Chicago, IL, USA). Results : According to increase of temperatures, T1 relaxation times were $214.39{\pm}0.25$, $236.02{\pm}0.87$, $267.47{\pm}0.48$, $299.44{\pm}0.64$, $330.19{\pm}1.72$ ms. T2 relaxation times were $180.17{\pm}0.27$, $197.17{\pm}0.44$, $217.92{\pm}0.39$, $239.89{\pm}0.53$, $257.40{\pm}1.77$ ms. With the correlation analysis, the correlation coefficients of T1 and T2 relaxation times were statistically significant at 0.998 and 0.999 (p< 0.05). Conclusion : T1 and T2 relaxation times are increased as temperature of tissue goes up. In conclusion, we suggest to recognize errors of relaxation time caused local temperature's differences, and consider external factors as well in the quantitative analysis of relaxation time or clinical tests.

  • PDF

Maximum TE Setting Range for Quantitatively Evaluating T2 Relaxation Time : Phantom Study (T2 이완시간의 정량적 평가에 있어서 Maximum TE의 설정 범위에 대한 연구 : 팬텀연구)

  • Park, Jin Seo;Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • This study aimed to evaluate the range of maximum TE that could measure T2 relaxation time accurately by setting diverse maximum TE with using contrast medium phantoms. Contrast medium phantoms ranging from low to high concentrations were made by using Gadoteridol. The relaxation time and relaxation rate were compared and evaluated by conducting T2 mapping by using reference data based on various TEs and data obtained from different maximum TEs. It was found that accurate T2 relaxation time could be expressed only when the maximum TE over a certain range was used in the section with long T2 relaxation time, such as the low concentration section of saline or gadolinium contrast medium. Therefore, the maximum TE shall be longer than the T2 relation time for accurately maturing the T2 relaxation of a certain tissue or a substance.

The Geographical Discrimination of Korean and Chinese Soybeans (Glycine max(L.) merrill) Using NMR Relaxation Methods (NMR relaxation 기법을 이용한 한국산과 중국산 대두의 원산지 판별)

  • Kim, Mi-Hyun;Rho, Jeong-Hae;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.292-295
    • /
    • 2009
  • To discriminate the geographical origin (Korea vs. China) of soybean (Glycine max(L.) merrill) samples (Korean samples n=25, Chinese samples n=24), proximate composition of soybeans and relaxation times were analyzed using low field NMR. Composition results indicate that there are no significant differences in moisture, fat, or ash contents between soybeans. The crude protein content of Korean soybeans, however, was higher than that of Chinese soybeans (p<0.05). The relaxation times of T1-IR (p<0.0001), T1-SR (p<0.0001), and T2-SE (p<0.0086) in Korean soybeans were longer than those in Chinese soybeans. The geographical origin of soybeans could be identified using a canonical discriminant analysis using two relaxation times (T1-IR and T1-SR) with 96% accuracy. Furthermore, in this study, a canonical discriminant analysis using four relaxation times (T1-IR, T1-SR, T2-SE, and T2-CPMG) could discriminate the geographical origin with 100% accuracy. It was possible to identify the geographical origin of Korean and Chinese soybeans using relaxation times from 10 MHz NMR.

Phantom-Validated Reference Values of Myocardial Mapping and Extracellular Volume at 3T in Healthy Koreans

  • Lee, Eunjin;Kim, Pan Ki;Choi, Byoung Wook;Jung, Jung Im
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.141-153
    • /
    • 2020
  • Purpose: Myocardial T1 and T2 relaxation times are affected by technical factors such as cardiovascular magnetic resonance platform/vendor. We aimed to validate T1 and T2 mapping sequences using a phantom; establish reference T1, T2, and extracellular volume (ECV) measurements using two sequences at 3T in normal Koreans; and compare the protocols and evaluate the differences from previously reported measurements. Materials and Methods: Eleven healthy subjects underwent cardiac magnetic resonance imaging (MRI) using 3T MRI equipment (Verio, Siemens, Erlangen, Germany). We did phantom validation before volunteer scanning: T1 mapping with modified look locker inversion recovery (MOLLI) with 5(3)3 and 4(1)3(1)2 sequences, and T2 mapping with gradient echo (GRE) and TrueFISP sequences. We did T1 and T2 mappings on the volunteers with the same sequences. ECV was also calculated with both sequences after gadolinium enhancement. Results: The phantom study showed no significant differences from the gold standard T1 and T2 values in either sequence. Pre-contrast T1 relaxation times of the 4(1)3(1)2 protocol was 1142.27 ± 36.64 ms and of the 5(3)3 was 1266.03 ± 32.86 ms on the volunteer study. T2 relaxation times of GRE were 40.09 ± 2.45 ms and T2 relaxation times of TrueFISP were 38.20 ± 1.64 ms in each. ECV calculation was 24.42% ± 2.41% and 26.11% ± 2.39% in the 4(1)3(1)2 and 5(3)3 protocols, respectively, and showed no differences at any segment or slice between the sequences. We also calculated ECV from the pre-enhancement T1 relaxation time of MOLLI 5(3)3 and the post-enhancement T1 relaxation time of MOLLI 4(1)3(1)2, with no significant differences between the combinations. Conclusion: Using phantom-validated sequences, we reported the normal myocardial T1, T2, and ECV reference values of healthy Koreans at 3T. There were no statistically significant differences between the sequences, although it has limited statistical value due to the small number of subjects studied. ECV showed no significant differences between calculations based on various pre- and post-mapping combinations.

The Molecular Weight Dependance of Paramagnetic Gd-chelates on T1 and T2 Relaxation Times (상자성 복합체의 분자량에 따른 T1 및 T2 자기이완시간에 관한 연구)

  • Kim In-Sung;Lee Young-Ju;Kim Ju-Hyun;Sujit Dutta;Kim Suk-Kyung;Kim Tae-Jeong;Kang Duk-Sik;Chang Yong-Min
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • To evaluate the T1, T2 magnetic relaxation properties of water molecule according to molecular weight of paramagnetic complex. 4-aminomethyicyclohexane carboxylic acid (0.63 g, 4 mmol) was mixed with the suspension solution of DMF (15 ml) and DTPA-bis-anhydride (0.71 g, 2 mmol) to synthesize the ligand. The ligand was then mixed with $Gd_2O_3$ (0.18 g, 0.5 mmol) to synthesize Gd-chelate. For the measurement of magnetic relaxivity of paramagnetic compounds, the compounds were diluted to 1 mM and then the relaxation times were measured at 1.57 (64 MHz). Inversion-recovery pulse sequence was employed for T1 relaxation measurement and CPMG (Carr-Purcell-Meiboon-Gill) pulse sequence was employed for T2 relaxation measurement. In case of inversion recovery sequence, total 35 images with different inversion time(T1)s ranging from 50 msec to 1,750 msec. To estimate the relaxation times, the signal intensity of each sample was measured using region of Interest (ROI) and then fitted by non-linear least square method to yield T1, T2 relaxation times and also R1 and R2. Compared to T1=($205.1{\pm}2.57$) msec and T2=($209.4{\pm}4.28$) msec of Omniscan (Gadodiamide), which is commercially available paramagnetic MR agent, T1 and T2 values of new paramagnetic complexes were reduced along with their molecular weight. That is, T1 value was ranged from $(96.35{\pm}2.04)\;to\;(79.38{\pm}1.55)$ msec and T2 value was ranged from $(91.02{\pm}2.08)\;to\;(76.66{\pm}1.84)$ msec. Among new paramagnetic complexes, there is a tendency that the R1 and R2 increase as the molecular weight is increases. As molecular weight of paramagnetic complex increases, T1 and T2 relaxation times reduce and thus the increase of relaxivity (R1 and R2) Is proportional to molecular weight.

  • PDF

The Development of Theoretical Model for Relaxation Mechanism of Sup erparamagnetic Nano Particles (초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구)

  • 장용민;황문정
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field (<1.0 Mhz), $\tau_{S1}(\tau_{S2}$, in case of T2), which is a correlation time in spectral density function, plays a major role. This suggests that realignment of nano-magnetic particles is most important at low magnetic field. On the other hand, at high field, $\tau$, which is another correlation time in spectral density function, plays a major role. Since $\tau$ is closely related to particle size, this suggests that the difference in R1 and R2 over particle sizes, at high field, is resulting not from the realignment of particles but from the particle size itself. Within normal body temperature region, the temperature dependence of T1 and T2 relaxation time showed that there is no change in T1 and T2 relaxation times at high field. Especially, T1 showed less temperature dependence compared to T2. Conclusion : We developed a theoretical model of r magnetic relaxation behavior of ultrasmall superparamagnetic iron oxide (USPIO), which was reported to show clinical multi-functionality by utilizing physical properties of nano-magnetic particle. In addition, based on the developed model, the computer simulation was performed to investigate the relationship between relaxation time of USPIO and the applied magnetic field strength.

  • PDF

The magnetic relaxation of MgB2 powder

  • Jeong Hun Yang;Jong Su You;Soo Kyung Lee;Kyu Jeong Song
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2023
  • Magnetic relaxation properties of pure MgB2 powder samples and diluted water-treated MgB2 powder samples were investigated. The magnetic field H-dependence, m(H), and the time t-dependence, m(t), of the magnetic moment m were measured and analyzed using the PPMS-VSM magnetometer equipment, respectively. The m(t) reduction rates of pure MgB2 powder samples and diluted water-treated MgB2 powder samples decreased to about 0.7 ~ 1.8% and 0.6 ~ 1.0% for about 7200 s, respectively, at temperature T = 15 K. The magnetic relaxation properties of the two types of MgB2 powders were analyzed by calculating the magnetic relaxation rate S = -dln(Mirr)/dln(t) values according to Anderson-Kim theory. The magnetic relaxation ratio S values of the two types of MgB2 powder samples were almost similar. As a result of the quantum creep effect, the constant magnetic relaxation rate S characteristic was confirmed at a temperature range of T = 10 K or less.

Measurements of $T_1$-and $T_2$-relaxation Time Changes According to the Morphological Characteristics of Gold Nanoparticles (GNPs) (금 나노 입자의 형태적 특성에 따른 $T_1$, $T_2$ 이완 시간의 변화 측정)

  • Jang, M.Y.;Han, Y.H.;Mun, C.W.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.48-56
    • /
    • 2011
  • Purpose : The aim of this study is to measure the typical MR variables such as $T_1$- and $T_2$-relaxation times according to morphological characteristics of gold nanopartides as a preliminary study to perform theragnosis using local heating by gold nanopartides. Materials and Methods : Two types of gold nanoparticles were used. Spheres were synthesized by various methods and stirring speed. Rods were synthesized by adding various concentrations of sphere nanopartides. Gold nanopartides were mixed with 2% agarose gel at 1:1 ratio and then signals were acquired using a 1.5T MRI. For the measurements of $T_1$-and $T_2$-relaxation times, TR and TE were varied, respectively. The results were acquired through $T_1$ and $T_2$ curves based on the intensities of MR image using self-developed software. And Statistical analysis was performed. Results : $T_1$ times were measured 1.86 sec and 2.08 sec for sphere and rod, respectively. On the other hands, $T_2$ times were measured 57 ms and 35.45 ms for sphere and rod. Conclusion : The changes of the MR variables according to the morphological characteristics of the gold nanopartides were confirmed. Optimal MR imaging conditions can be obtained by choosing proper TR and TE according to the type of nanoparticles.

Effects of CT Contrast Medium on the Relaxation Rate of MR Contrast Medium (CT 조영제가 MR 조영제의 이완율에 미치는 영향)

  • Kwon, Soon-Yong;Kang, Chung-Hwan;Jeong, Hyeon Keum;Park, Jin Seo;Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.103-107
    • /
    • 2018
  • In MR, the iodine CT contrast medium reduces the T1 and T2 relaxation times of the substance, resulting in a change in signal intensity. This study aimed to measure the relaxation rate of MR contrast medium with or without diluting CT contrast medium and analyzed the effect of CT contrast medium. Undiluted Gadoteridol solution was diluted with saline to prepare MR contrast medium phantoms with various levels of Gadoteridol concentrations. Moreover, undiluted Iomeprol was mixed with the prepared MR contrast medium phantoms at 1:1 ratio to make MR contrast medium phantoms with containing CT contrast medium for the experiment. T1 and T2 mappings were conducted to quantitatively evaluate the relaxation time and relaxation rate of these phantoms. The results showed that the T1 and T2 relaxation time and relaxation rate of MR contrast medium diluted with CT contrast medium were significantly (p<0.05) shorter than those of MR contrast medium not diluted with CT contrast medium. The results of this study imply that, when MR contrast medium shall be used after injecting CT contrast medium, CT contrast medium should be discharged enough. Moreover, it would be desirable to conduct CT test after taking MRI test in order to reduce the effects of CT contrast medium on MR contrast medium.