• Title/Summary/Keyword: $TNF{\alpha}$ Gene

Search Result 398, Processing Time 0.034 seconds

Polymorphisms of tumor necrosis factor-alpha promotor gene in Kawasaki disease and relation to the risk of coronary artery lesion (가와사키병에서의 TNF-alpha 유전자의 다형성 및 관상동맥 합병증과의 연관성)

  • Kim, Se-hwa;Yun, Jang-won;Lee, Young-hyuk;Cheon, Eun-jung
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.4
    • /
    • pp.476-480
    • /
    • 2009
  • Purpose : The purpose of this study was to investigate the polymorphisms of the TNF-alpha promotor gene, its susceptibility to Kawasaki disease (KD) and to assess whether the TNF-alpha promotor gene polymorphism was related the risk of coronary artery lesions (CALs). Methods : From January 2003 to January 2007, 51 children (30 boys and 21 girls) with KD and 48 children forming an age-matched control group were studied. DNA from the peripheral blood of all the children was sampled, and the DNA polymorphisms of the 5' flanking regions of the TNF-alpha promoter gene at position -308 [guanine (G) to adenine (A)] were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Then, the relationship between KD and the TNF-alpha promotor gene polymorphisms was evaluated. Results : The A allele frequency of the -308 site of the TNF-alpha promotor gene was 17.6% (9/51) for children with KD and 6.8% (3/48) for the control group children, but this result was not statistically significant. Twenty-four patients experienced CALs within 60 days after the onset of symptoms. KD children with TNF-alpha -308 A allele had lower frequencies of CALs (12.5% versus 22.2%, P>0.05). Conclusion : The DNA polymorphism of the -308 site TNF-alpha gene was not associated with susceptibility to KD and a risk of CALs. Multicenter, large-scale randomized controlled trials are needed for further study.

Specific Gene Silencing by Single Stranded Large Circular Antisense Molecules

  • Park, Jong-Gu
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2004
  • I report that single-stranded antisense as a part of large circular (LC-) genomic DNA of recombinant M13 phage exhibits enhanced stability, sequence specific antisense activity, and no need for target site search. A cDNA fragment (708 bp) of rat TNF-$\alpha$ was inserted into a phagemid vector, and TNF-$\alpha$ antisense molecules (TNF$\alpha$-LCAS) were produced as single-stranded circular DNA. When introduced into a rat monocyte/macrophage cell line, WRT7/P2, TNF$\alpha$-LCAS was able to ablate LPS-induced TNF-$\alpha$ mRNA to completion. The antisense effect of TNF$\alpha$-LCAS was shown to be sequence-specific because expressions of three control genes ($\beta$-actin, GAPDH and IL-1$\beta$) were not significantly altered by the antisense treatment. Further, TNF$\alpha$-LCAS was found to be highly efficacious as only 0.1 $\mu$g (0.24 nM) of TNF$\alpha$-LCAS was sufficient to block TNF-$\alpha$ expression in 1$\times10^5$ WRT7/P2 cells. I have also observed specific antisense activity in reduction of NF-$\kappa$B gene expression. The results suggest that an antisense sequence as a part of single-stranded circular genomic DNA has a specific antisense activity.

  • PDF

The Mechanisms of Resistance to TNF in TNF-Sensitive Cancer Cells Transfected with TNF-$\alpha$ Gene Using Retroviral Vector (암세포에서 Retroviral Vector를 이용한 종양괴사인자 유전자 이입후 획득된 종양괴사인자 내성의 기전)

  • Lee, Hyuk-Pyo;Oh, Yeon-Mok;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.547-558
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majorities of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to hoot. In previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF. Understanding the mechanisms of TNF-resistance in TNF-$\alpha$ gene transfected cancer cells would be an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate the role of new protective protein synthesis in the acquired resistance to TNF of TNF-$\alpha$ gene transfected cancer cells. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164, a murine fibrosarcoma cell line, using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, ELISA, MIT assay. Then we determined the TNF resistance of TNF gene transfected cells(WEHI164-TNF) and the changes of TNF sensitivities after treatments with actinomycin D(transcription inhibitor) and cycloheximide ( translation inhibitor). Results : WEHI164 which was sensitive to TNF became resistant to TNF after being transfected with TNF-$\alpha$ gene and the resistance to TNF was partially reversed after treatment with actinomycin D, but not with cycloheximide. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ gene transfection may be associated with synthesis of some protective proteins.

  • PDF

The TNF Receptor Expressions in Cancer Cells Transfected with TNF-$\alpha$ cDNA Using Retroviral Vector (Retroviral vector를 이용한 종양괴사인자 (TNF-$\alpha$) 유전자 이입 암세포에서 종양괴사인자 수용체의 발현)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1271-1284
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF-resistance in TNF-$\alpha$ cDNA transfected cancer cells would be an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate whether the levels of TNF receptor mRNA expression and soluble TNF receptor release from cancer cells are changed after TNF-$\alpha$ cDNA transfection. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, EUSA, MTT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and evaluated the TNF receptor mRNA expression with Northern blot analysis and soluble TNF receptor release with EUSA. Results : The TNF receptor mRNA expressions of parental cells and genetically modified cells were not significantly different. The soluble TNF receptor levels of media from genetically modified cells were lower than those from parental cells. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the TNF receptor and the soluble TNF receptor expression.

  • PDF

Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells (펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구)

  • Jeong, Ji-Young;Son, Yonghae;Kim, Bo-Young;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1251-1257
    • /
    • 2019
  • Peptidoglycan (PG) is found in atheromatous lesions of arteries, where monocytes/macrophages express inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$). This study investigated the effects of PG on $TNF-{\alpha}$ expression and examined possible cellular factors involved in $TNF-{\alpha}$ upregulation. The overall aim was to identify the molecular mechanisms underlying inflammatory responses to bacterial pathogen-associated molecular patterns in the artery. Exposure of human THP-1 monocytic cells to PG enhanced the secretion of $TNF-{\alpha}$ and induced its gene transcription. Inhibition of TLR-2/4 with OxPAPC significantly inhibited $TNF-{\alpha}$ gene expression, whereas inhibition of LPS by polymyxin B did not. The PG-induced expression of $TNF-{\alpha}$ was also significantly suppressed by pharmacological inhibitors that modulate activities of cellular signaling molecules; for example, U0126 (an ERK inhibitor), SB202190 (a p38 MAPK inhibitor), and SP6001250 (a JNK inhibitor) significantly attenuated PG-induced transcription of $TNF-{\alpha}$ and secretion of its gene product. $TNF-{\alpha}$ expression was also inhibited by rapamycin (an mTOR inhibitor), LY294002 (a PI3K inhibitor), and Akt inhibitor IV (an Akt inhibitor). ROS-regulating compounds, like NAC and DPI, also significantly attenuated $TNF{\alpha}$ expression induced by PG. These results suggest that PG induces $TNF-{\alpha}$ expression in monocytes/macrophages by multiple molecules, including TLR-2, PI3K, Akt, mTOR, MAPKs, and ROS.

Effect of TNF-$\alpha$ Gene Transfer to Respiratory Cancer Cell Lines on Sensitivity to Anticancer drugs (호흡기계암세포주에서 TNF-$\alpha$ 유전자의 이입이 항암제 감수성에 미치는 효과)

  • Mo, Eun-Kyung;Lee, Jae-Ho;Lee, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Choi, Hyung-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.302-313
    • /
    • 1995
  • Background: Tumor necrosis factor(TNF) showed antitumor cytolytic effects on sensitive tumor cells in numerous in vivo and in vitro studies. But it could not be administered systemically to human because of severe systemic adverse effects at effective concentrations against tumor cells. Many studies showed that a high concentrations of TNF in the local milieu may evoke in vivo TNF-responsive mechanisms sufficient to suppress tumor growth. Recently developed technique of TNF gene transfer to tumor cells using retrovirus vector could be a good candidate for local TNF administration. TNF is also known to synergistically enhance in vitro cytotoxicity of chemotherapeutic drugs targeted to DNA topoisomerase II against TNF-sensitive tumor cell lines. In this study the in vitro chemosensitivity against DNA topoisomerase II targeted chemotherapeutic drugs was evaluated using some respiratory cancer cell lines to which TNF gene had been transferred. Method: NCI-H2058, a human mesothelioma cell line, A549, a human lung adenocarcinoma cell line and WEHI 164 cell line, a murine fibrosarcoma cell line were treated with etoposide and doxorubicin, which are typical topoisomerase II - targeted chemotherapeutic agents, at different concentration. The resultant cytotoxicity was measured by MIT assay. Then the cytotoxicity of the same chemotherapeutic agents was measured after TNF-$\alpha$ gene-transfer and the two results were compared. Results: The cytotoxicity was not increased significantly in WEHI164 cell line and A549 cell line but statistically significant increase was observed in H2058 cell line when TNF-$\alpha$ gene was transferred(p<0.05). Conclusion: These findings show that TNF-$\alpha$ gene transfer to respiratory cancer cell lines results in variable effects on chemosensitivity against topoisomerase II inhibitor among different cell lines in vitro and can be additively cytotoxic in certain selective tumor cell lines.

  • PDF

Effect of Retrovirus Mediated TNF-$\alpha$ Gene Transfer to Tumor Necrosis Factor(TNF) Sensitive Tumor Cell Lines on Sensitivity to TNF (Retroviral Vector를 이용한 TNF-$\alpha$ 유전자의 이입이 암세포의 종양괴사인자(TNF) 감수성에 미치는 효과)

  • Oh, Yeon-Mok;Park, Kyeo-Yeong;Jung, Man-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Goo;Sim, Young-Soo;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.87-96
    • /
    • 1994
  • Background : Since tumor necrosis factor was discovered in 1975, TNF has been well known about its cytotoxic effect on tumor cells in vivo and in vitro. According to the recent improvement of molecular biological techinques, it is possible that exogenous TNF gene is transferred to tumor cells and is expressed in theirs. By virtue of TNF gene transfer, we have expected that TNF expressed in TNF-gene-transferred tumor cells would kill tumor cells in vivo without systemic side effect. The expected mechanisms in which antitumor effects of TNF expressed in TNF-gene-transferred tumor cells are working would be as followings. In the first mechanism, TNF expressed in TNF-gene-transferred tumor cells would kill tumor cells around(like homicide). In the second mechanism, TNF expressed in TNF-gene-transferred tumor cells would kill themselves(like suicide). In the third mechanism, TNF expressed in TNF-gene-transferred tumor cells would recruit immune effector cells and kill tumor cells indirectly. In the last mechanism, TNF expressed in TNF-gene-transferred tumor cells would augment cytokine such as interferon-$\gamma$ to kill tumor cells. Among these four mechanisms of antitumor effect, only the second mechanism has not been established yet. Therefore, to elucidate the second mechanism, We performed this study. Method : We transferred TNF-$\alpha$ gene to NCI-H2058, a human mesothelioma cell line and WEHI164, a murine fibrosarcoma cell line by using retroviral vector(pLT12SNTNF). And, We determined by using MTT assay whether TNF expressed in TNF-gene-transferred tumor cell lines would kill themselves like suicide or not. Then, if TNF-gene-transferred tumor cell lines would not suicide themselves, I would know more about the TNF sensitivity of TNF-gene-transferred tumor cell lines to exogenous TNF also by MTT assay. Result : NCI-H2058 and WEHI164 which were sensitive to TNF, became far less sensitive to endogenous and exogenous TNF after being transferred TNF-$\alpha$ gene to. Conclusion : TNF-gene-transfer to NCI-H2058 and WEHI164 gave them resistance to TNF.

  • PDF

Regulation of Tumor Necrosis Factor-${\alpha}$-induced Airway Mucin Production and Gene Expression by Carbenoxolone, Prunetin, and Silibinin

  • Lee, Hyun-Jae;Lee, Su-Yel;Jeon, Byeong-Kyou;Lee, Jae-Woo;Lee, Mi-Nam;Kim, Ju-Ock;Lee, Choong-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.5
    • /
    • pp.348-353
    • /
    • 2010
  • Background: In this study, we tried to investigate whether carbenoxolone, prunetin, and silibinin affect tumor necrosis factor (TNF)-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with each agent (carbenoxolone, prunetin, and silibinin) for 30 min and then stimulated with TNF-${\alpha}$ for 24 hours. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay, respectively. Results: Carbenoxolone, prunetin and silibinin inhibited the production of MUC5AC mucin protein induced by TNF-${\alpha}$; the 3 compounds also inhibited the expression of MUC5AC mucin gene induced by TNF-${\alpha}$. Conclusion: This result suggests that carbenoxolone, prunetin and silibinin can inhibit mucin gene expression and production of mucin protein induced by TNF-${\alpha}$, by directly acting on airway epithelial cells.

Study on Tumor Necrosis Factor- ${\alpha}$ Gene Polymorphism in Rheumatoid Arthritis (류마티스 관절염에 있어 종양괴사인자 다형성에 대한 연구)

  • Kim, Kyung-Un;Han, Mi-Yung;Lee, Yoon-Kyung;Lee, Kyung-Min;Lee, Bong-Hyo;Lim, Seong-Chul;Jung, Tae-Young;Seo, Jung-Chul
    • Journal of Acupuncture Research
    • /
    • v.24 no.3
    • /
    • pp.197-205
    • /
    • 2007
  • Objectives : Tumor necrosis factor-${\alpha}$(TNF ${\alpha}$) is a proinflammatory cytokine involved in the pathogenesis of rheumatoid arthritis. This study was designed to investigate the relation between TNF-${\alpha}$ gene polymorphism and rheumatoid arthritis in Korean population. Methods : This study was carried out on 103 rheumatoid arthritis patients who fulfilled the American College of Rheumatology 1987 revised criteria for rheumatoid arthritis and 208 healthy control subjects. Blood samples from all subjects were obtained for DNA extraction. The extracted DNA was amplified by polymerse chain reaction(PCR). PCR products were visualized by 2% agarose gel electrophoresis. We investigated the genotyping of TNF-${\alpha}$ by using Pyrosequencing. Results: The genotypes of TNF-${\alpha}$ gene were GG, AG and AA. While the distribution of TNF-${\alpha}$ polymorphism in control subjects was 92.31%, 7.21%, 0.48% respectively, in rheumatoid arthritis patients was 93.20%, 6.80%, 0.00%(GG, AG, AA). There was no statistical significant allelic frequency difference between control and rheumatoid arthritis groups. Conclusions : We concluded that there was no significant association between TNF-${\alpha}$ gene polymorphism and rheumatoid arthritis. However, the findings of this study need to be confirmed in more patients and further studies.

  • PDF

No Association between Tumor Necrosis Factor-alpha Gene Polymorphisms and Lung Cancer Risk

  • Kim, Jin Hee;Hong, Yun-Chul
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.12.1-12.5
    • /
    • 2013
  • Objectives The role of genetic polymorphisms of tumor necrosis factor-alpha (TNF-${\alpha}$) for lung cancer development was evaluated. Methods Genotypes of the TNF-${\alpha}$ polymorphisms, -1210C>T, -487A>G, -417A>G, IVS1+123G>A, and IVS3+51A>G, were determined in 616 lung cancer cases and 616 lung cancer-free controls. Results After adjusting for body mass index and smoking, each TNF-${\alpha}$ genotype or haplotype composed of five TNF-${\alpha}$ single nucleotide polymorphisms did not show an association with lung cancer risk (p>0.05). The statistical power was found to be 88.4%, 89.3%, 93.3%, 69.7%, and 93.9% for 1210C>T, -487A>G, -417A>G, IVS1+123G>A, and IVS3+51A>G, respectively. Furthermore, the effects of each SNP or haplotype on lung cancer risk were not found to be different according to the cell type of lung cancer (p>0.05). In the repeated analysis with only subjects without other diseases related to inflammation, there was also no association between polymorphisms or haplotypes of the TNF-${\alpha}$ gene and lung cancer risk (p>0.05). Conclusions This study found no association between common variants of the TNF-${\alpha}$ gene and lung cancer risk.