• Title/Summary/Keyword: $SnO_2@carbon$

Search Result 59, Processing Time 0.027 seconds

Preparation and Characteristics of MWNT/SnO2 Nano-Composite Anode by Homogeneous Precipitation Method (균일 침전법에 의한 MWNT/SnO2 나노복합음극재의 제조)

  • Han, Won-Kyu;Choa, Yong-Ho;Oh, Sung-Tag;Cho, Jin-Ki;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.187-192
    • /
    • 2008
  • Multi-walled carbon nanotube (MWNT)/$SnO_2$ nano-composite (MSC) for the anode electrode of a Li-ion battery was prepared using a homogeneous precipitation method with $SnCl_2$ precursors in the presence of MWNT. XRD results indicate that when annealed in Ar at $400^{\circ}C$, $Sn_6O_4(OH)_4$ was fully converted to $SnO_2$ phases. TEM observations showed that most of the $SnO_2$ nanoparticles were deposited directly on the outside surface of the MWNT. The electrochemical performance of the MSC electrode showed higher specific capacities than a MWNT and better cycleability than a nano-$SnO_2$ electrode. The electrochemical performance of the MSC electrode improved because the MWNT in the MSC electrode absorbed the mechanical stress induced from a volume change during alloying and de-alloying reactions with lithium, leading to an increase in the electrical conductivity of the composite material.

The Changes of CO Gas Sensing Properties of ZnO and $SnO_2$ with Addition $TiO_2$ ($TiO_2$첨가에 의한 ZnO와 $SnO_2$의 일산화탄소 감응특성 변화)

  • Kim, Tae-Won;Choi, U-Sung;Jun, Seon-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.312-316
    • /
    • 1998
  • ZnO- TiO$_2$, and Sn0$_2$ - Ti0$_2$ ceramic composites doped with TiO$_2$ were prepared and their electrical and 1000ppm CO gas sensing properties were investigated. The phases of samples were analyzed by XRD, and the microsturctures of the fractured surface of samples were observed by SEM. A carbon monoxide gas sensitivity was de¬fined as the ratio of the resistance in dry air atmosphere(R$drt air$) to the resistance in 1000ppm CO gas atmosphere(R$_co$) The CO gas sensitivity of Smol% Ti0$_2$-added ZnO decreased about 1.7 times compared to that of pure ZnO. On the other hand, the maximum CO gas sensitivity of Ti0$_2$-added SnO$_2$ increased about 2.5 times compared to that of pure SnO$_2$. Therefore, the CO gas sensitivies of SnO$_2$-TiO$_2$ composite were better than those of ZnO- Ti0$_2$ and the temper¬ature range showing the maximum sensitivity for Sn0$_2$-TiO$_2$ composite was lower than that for ZnO- Ti0$_2$.

  • PDF

A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes (Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

Low temperature preparation of Pt alloy electrocatalysts for DMFC

  • Song, Min-Wu;Lee, Kyeong-Seop;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.171-171
    • /
    • 2009
  • The electrodes are usually made of a porous mixture of carbon-supported platinum and ionomers. $SnO_2$ particles provide as supports that have been used for DMFCs, and it have high catalytic activities toward methanol oxidation. The main advantage of $SnO_2$ supported electrodes is that it has strong chemical interactions with metallic components. The high activity to a synergistic bifunctional mechanism in which Pt provides the adsorption sites for CO, while oxygen adsorbs dissociative on $SnO_2$. The reaction between the adsorbed species occurs at the Pt/$SnO_2$ boundary. The morphological observations were characterized by FESEM and transmission electron microscopy (TEM). $SnO_2$ particles crystallinity was analyzed by the X-ray diffraction (XRD). The surface bonded state of the $SnO_2$ particles and electrode materials were observed by the X-ray photoelectron spectroscopy (XPS). The electric properties of the Pt/$SnO_2$ catalyst for methanol oxidation have been investigated by the cyclic voltametry (CV) in 0.1M $H_2SO_4$ and 0.1M MeOH aqueous solution. The peak current density of methanol oxidation was increased as the $SnO_2$ content in the anode catalysts increased. Pt/$SnO_2$ catalysts improve the removal of CO ads species formed on the platinum surface during methanol electro-oxidation.

  • PDF

Reduction of SnO2 by a Mixed Gas of Methane and Hydrogen (메탄과 수소의 혼합 가스에 의한 산화주석의 환원)

  • Han, Taeyang;Sohn, Youhan;Kim, Sangyeol;Jung, Hyun-Chul;Kim, Hyun You;Lee, San-ro;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.725-731
    • /
    • 2018
  • We investigate the reduction of $SnO_2$ and the generation of syngas($H_2$, CO) using methane($CH_4$) and hydrogen($H_2$) or a mixed gas of methane and hydrogen as a reducing gas. When methane is used as a reducing gas, carbon is formed by the decomposition of methane on the reduced Sn surface, and the amount of generated carbon increases as the amount and time of the supply of methane increases. However, when hydrogen is used as a reducing gas, carbon is not generated. High purity Sn of 99.8 % and a high recovery rate of Sn of 93 % are obtained under all conditions. The effects of reducing gas species and the gas mixing ratio on the purity and recovery of Sn are not significantly different, but hydrogen is somewhat more effective in increasing the purity and recovery rate of Sn than methane. When 1 mole of methane and 1 mole of hydrogen are mixed, a product gas with an $H_2/CO$ value of 2, which is known to be most useful as syngas, is obtained.

Synthesis of SnO2 nanowires on one-dimensional carbonization cotton fabric

  • Khai, Tran Van;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.25-28
    • /
    • 2012
  • Tin-oxide ($SnO_2$) nanowires have been synthesized on one-dimensional (1D) carbonization cotton fabric using chemical vapour deposition method. One-dimensional (1D) carbonization cotton fabric has been synthesized from cotton fabric using annealing process in nitrogen gas at $1000^{\circ}C$. The $SnO_2$ nanowires are single-crystalline rutile structures with 20 nm in diameter and 10 ${\mu}m$ in length. Scanning electron microscopy (SEM), x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and photoluminescence (PL) spectroscopy were utilized to characterize the as-synthesized products.

Fabrication and characterization of a small-sized gas identification instrument for detecting LPG/LNG and CO gases

  • Lee Kyu-Chung;Hur Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • A small-sized gas identification system has been fabricated and characterized using an integrated gas sensor array and artificial neural-network. The sensor array consists of four thick-film oxide semiconductor gas sensors whose sensing layers are $In_{2}O_{3}-Sb_{2}O_{5}-Pd-doped\;SnO_2$ + Pd-coated layer, $La_{2}O_{5}-PdCl_{2}-doped\;SnO_2,\;WO_{3}-doped\;SnO_{2}$ + Pt-coated layer and $ThO_{2}-V_{2}O_{5}-PdCl_{2}\;doped\;SnO_{2}$. The small-sized gas identification instrument is composed of a GMS 81504 containing an internal ROM (4k bytes), a RAM (128 bytes) and four-channel AD converter as MPU, LEDs for displaying alarm conditions for three gases (liquefied petroleum gas: LPG, liquefied natural gas: LNG and carbon monoxide: CO) and interface circuits for them. The instrument has been used to identify alarm conditions for three gases among the real circumstances and the identification has been successfully demonstrated.

Some Features of Dye-sensitized Solar Cell Combining with Single-walled Carbon Nanotubes

  • Lee, Sanghun;Park, Hyunjune;Park, Taehee;Lee, Jongtaek;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.925-928
    • /
    • 2014
  • A dye-sensitized solar cell (DSSC) was fabricated with a nanocrystalline $TiO_2$ film electrode on FTO glass, N719 dye, electrolytes (or $CsSnI_3$), and counter Pt electrode by incorporating it with single-walled carbon nanotubes (SWNTs). SWNTs were combined with $TiO_2$ film, $CsSnI_3$, Pt electrode, separately, and the SWNT-containing cell was compared with a pristine cell in cell performance. We also examined the performance change by pressing $TiO_2$ film, during cell fabrication, inside a high pressure chamber. Mostly, the change of conversion efficiency was compared for each cell, and an atomic force microscopy data were suggested to explain our results.

Electrochemical Properties of Tin oxide-flyash Composite for Lithium Ion Polymer Battery (리튬 이온 폴리머 전지용 Tin oxide-flyash Composite 전극의 전기화학적 특성)

  • Kim, Jong-Uk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.88-90
    • /
    • 2003
  • The purpose of this study is to research and develop tin oxide-flash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry and charge/discharge cycling of SnO-flyash/SPE/Li cells. The first discharge capacity of SnO-flyash composite anode was 720 mAh/g. The discharge capacity of SnO-flyash composite anode 412 and 314 mAh/g at cycle 2 and 10 at room temperature, respectively. The SnO-flyash composite anode with PVDF-PMMA-PC-EC-$LiClO_4$ electrolyte showed good capacity with cycling.

  • PDF

The Reactivity for the SO2 Reduction with CO and H2 over Sn-Zr Based Catalysts (Sn-Zr계 촉매 상에서 CO와 H2를 이용한 SO2 환원 반응특성)

  • Han, Gi Bo;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.356-362
    • /
    • 2006
  • The $SO_2$ reduction using CO and $H_2$ over Sn-Zr based catalysts was performed in this study. Sn-Zr based catalysts with Sn/Zr molar ratio (0/1, 1/4, 1/1, 2/1, 3/1, 1/0) were prepared by the precipitation and co-precipitation method. The effect of the temperature on the reaction characteristics of the $SO_2$ reduction with a reducing agent such as $H_2$ and CO was investigated under the conditions of space velocity of $10,000ml/g_{-cat.}h$, $([CO(or\;H_2)]/[SO_2])$ of 2.0. As a result, the activity of Sn-Zr based catalysts were higher than $SnO_2$ and $ZrO_2$. The reactivity for the $SO_2$ reduction with CO was higher than that with $H_2$, and sulfur yield in the $SO_2$ reduction by $H_2$ was higher than that by CO. The reactivity for the $SO_2$ reduction with $H_2$ was increased with the reaction temperature regardless of Sn-Zr based catalyst with a Sn/Zr molar ratio. $SnO_2-ZrO_2$ (Sn/Zr=1/4) had highest activity at $550^{\circ}C$, in the $SO_2$ reduction with $H_2$ and $SO_2$ conversion of 94.4% and sulfur yield of 66.4% were obtained at $550^{\circ}C$. On the other hand, in the $SO_2$ reduction by CO, the reactivity was decreased with the increase over $325^{\circ}C$. At the optimal temperature of $325^{\circ}C$, $SO_2$ conversion and sulfur yield were about 100% and 99.5%, respectively, in the $SO_2$ reduction over $SnO_2-ZrO_2$ (Sn/Zr=3/1). Also, the $SO_2$ reduction using syngas with $CO/H_2$ ratio over $SnO_2-ZrO_2$ (Sn/Zr=2/1) was performed in order to investigate the application possibility of the simulated coal gas as the reductant in DSRP. As a result, the reactivity of the $SO_2$ reduction using syngas with $CO/H_2$ ratio was increased with increasing the CO content of syngas. Therefore, it could be known that DSRP using the simulated coal gas over Sn-Zr based catalyst is possible to be realized in IGCC system