• 제목/요약/키워드: $Si_3N_4$ composites

검색결과 89건 처리시간 0.017초

YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성 (Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet)

  • 이영일;김영욱;최헌진;이준근
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF

$Si_3N_4/SiC$ Nano Composite의 제조 (The Fabrication of $Si_3N_4/SiC$ Nano-Composite)

  • 이수영;이한섭
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.165-171
    • /
    • 1993
  • $Si_3N_4/Sic$. nano-composites were fabricated by hot-pressing, gas pressure sintering. The composites contained up to 50 wt. % of SiC. The mechanical properties such as strength, toughness, and hardness of the composite are compared each other. The flexural strength of the composites was improved significantly by introducing fine SiC particles into $Si_3N_4$ matrix, while the fracture toughness was not improved. The increase in flexural strength is attributed to the formation of uniformly elongated $\beta -Si_3N_4$ grains as well as the reduction of grain size.

  • PDF

SiC 휘스커 강화 질화규소 복합재료의 기계작 성질에 미치는 카본 코팅 SiC 휘스커의 영향 (Effects of Carbon-coated SiC Whiskers on the Mechanical Properties of SiC Whisker Reinforced Silicon Nitride Ceramic Composite)

  • 배인경;이영규;조원승;최상욱;장병국;임실묵
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1007-1015
    • /
    • 1999
  • The Si3N4 composites reinforced with carbon-coated SiC whiskers were fabricated by hot-pressing at 180$0^{\circ}C$ for 2 hours to examine the effects of carbon-coated whiskers on the mechanical properties of SiC whisker reinforced Si3N4 composites. The flexural strength of the Si3N4 composites and Si3N4 monolith respectively. The weak interfacial bond between carbon-coated SiC whiskers and Si3N4 matrix which enhances the crack deflection and whisker pull-out could contribute to the improvement of mechanical properties of the composites.

  • PDF

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측 (Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements)

  • 신순기
    • 한국재료학회지
    • /
    • 제10권5호
    • /
    • pp.364-368
    • /
    • 2000
  • 섬유강화 세라믹스 복합재료의 파괴예측 가능성을 알아보기 위해서 탄소섬유와 WC분말입자를 전기 전도상으로 이용하여 재료 스스로가 파괴예측 기능을 가지도록 한 SiC섬유강화 $Si_3N_4$세라믹스기 복합재료를 1773K에서 1시간 동안 hot-press하여 제작하였다. 4점 굽힘 시험하는 동안 전기저항 변화를 측정하여 파괴예측 기능을 평가하였다. 그 결과 전기정항은 재료의 파괴거동과 밀접한 관계를 가지면서 변화함을 알았다. 특히 분말형태의 전기전도상의 첨가는 본 복합재료의 파괴과정을 낮은 응력단계로부터 예측하는데 유용하였다. 결과적으로 이러한 재료설RP의 신개 (파괴예측기능)의도입은 $Si_3N_4$기 세라믹스를 구조재료로 이용함에 있어서 큰 문제가 되고 있는 신뢰성 확보에 새로운 기능을 준다고 생각되었다. 생각되었다.

  • PDF

$SiC-Si_3N_4$ 세라믹공구의 소결시간과 조성변화가 절삭특성에 미치는 영향 (Effect of Sintering Time and Composition on Cutting Characteristics of $SiC-Si_3N_4$ Ceramic Tool)

  • 박준석;김경재;이성구;권원태;김영욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.321-326
    • /
    • 2001
  • In the present study, $Si_3N_4-SiC$ ceramic composites that contained up to 20 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. The microstructure, the mechanical properties, and the cutting performance of resulting ceramic composites were investigated. By fixing the composition as $Si_3N_4-20$ wt% SiC, the effect of sintering time on the microstructure, the mechanical properties, and the cutting performance were also investigated. For machining of gray cast i개n, the tool life increases with increasing the amount of SiC content in the composites; The tool life also increased with increasing the sintering time. The tool life of the home-made cutting tools was very close to that of commercial $Si_3N_4$ cutting tool. The superior cutting performance of $Si_3N_4-SiC$ ceramic cutting tools suggests the possibility to be a new ceramic tool material.

  • PDF

폐 SiC 슬러지를 이용하여 제조한 연속다공질 SiC-Si3N4 복합체의 미세조직 (Microstructures Of Continuously Porous SiC-Si3N4 Composites Fabricated Using Waste SiC Sludge)

  • ;이희정;장희동;이병택
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.177-182
    • /
    • 2005
  • Large amounts of the waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of the single silicon crystal ingots. The waste SiC sludge was purified by the washing process and the purified SiC powders were used to fabricate continuously porous $SiC-Si_3N_4$ composites using a fibrous monolithic process, in which carbon, $6wt\%\;Y_2O_3-2\;wt\%\;A1_2O_3$ and ethylene vinyl acetate were added as a pore-forming agent, sintering additives, and binder, respectively. In the burning-out process, carbon was fully removed and continuously porous $SiC-Si_3N_4$ composites were successfully fabricated. The green bodies containing SiC, Si particles and sintering additives were nitrided at $1410^{\circ}C$ in a flowing $N_2+10\%\;H_2$ gas mixture. Continuously porous composites were combined with SiC, ${\alpha}Si_3N_4,\;\beta-Si_3N_4$ and a few $\%$ of Fe phases. The pore size of the 2nd and the 3rd passed $SiC-Si_3N_4$ composites was $260\;{\mu}m$ and $35\;{\mu}m$ in diameter, respectively.

연속다공질 SiC-Si3N4 복합체의 미세구조 및 기계적 특성 (Microstructure Control and Mechanical Properties of Continuously Porous SiC-Si3N4 Composites)

  • ;;이희정;장희동;이병택
    • 한국재료학회지
    • /
    • 제16권3호
    • /
    • pp.188-192
    • /
    • 2006
  • The microstructures and mechanical properties of continuously porous $SiC-Si_3N_4$composites fabricated by multi-pass extrusion were investigated at different Si levels added. Si-powder with different weight percentages (0%, 5%, 10%, 15%, 20%) was added to the SiC powder to make the raw mixture powders, with $6wt%Y_2O_3-2wt%Al_2O_3$ as sintering additives, carbon ($10-15{\mu}m$) as a pore-forming agent, ethylene vinyl acetate as a binder and stearic acid ($CH_3(CH_2)_{16}COOH$) as a lubricant. In the continuously porous $SiC-Si_3N_4$ composites, $Si_3N_4$ whiskers like the hairs of nostrils were frequently observed on the wall of the pores. In this study, the morphology of the $Si_3N_4$ whiskers was investigated with the silicon addition content. In the composites containing of 10 wt% Si, a large number of $Si_3N_4$ whiskers was found at the continuous pore regions. In the sample to which 15 wt% Si powder was added, maximum values of about 101 MPa bending strength and 57.5% relative density were obtained.

SiC계 세라믹 절삭공구의 절삭특성 평가 Part 1: SiC계 절삭공구의 미세구조와 기계적 특성 (Cutting Characteristics of SiC-based Ceramic Cutting Tools Part 1: Microstructure and Mechanical Properties of SiC-based Ceramic Cutting Tools)

  • 박준석;김경재;심완희;권원태;김영욱
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.82-88
    • /
    • 2001
  • In order to fulfil the requirements of the various performance profiles of ceramic cutting tools, six different SiC-based ceramics have been fabricated by hot-pressing (SiC--${Si}_3 {N}_4$composites) or by hot-pressing and subsequent annealing (monolithic SiC and SiC-TiC composites). Correlation between the annealing time and the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The grain size of both ${Si}_3 {N}_4$and SiC in SiC-${Si}_3 {N}_4$composites increased with the annealing time. Monolithic SiC has the highest hardness, SiC-TiC composite the highest toughness, and the SiC-${Si}_3 {N}_4$composite the highest strength among the ceramics investigated. The hardness of SiC-${Si}_3 {N}_4$composites was relatively independent of the grain size, but dependent on the sintered density. The cutting performance of the newly developed SiC-based ceramic cutting tools will be described in Part 2 of this paper.

  • PDF

Phase Equilibria and Reaction Paths in the System Si3N4-SiC-TiCxN1-x-C-N

  • H.J.Seifert
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.18-35
    • /
    • 1999
  • Phase equilibria in the system Si3N4-TiC-TiCxN1-x-C-N were determined by thermodynamic calculations (CALPHAD-method). The reaction peaction paths for Si3N4-TiC and SiC-TiC composites in the Ti-Si-C-n system were simulated at I bar N2-pressure and varying terpreatures. At a temperature of 1923 K two tie-triangles (TiC0.34N0.66+SiC+C and TiC0.13N0.87+SiC+Si3N4) and two 2-phase fieds (TiCxN1-x+SiC; 0.13