• Title/Summary/Keyword: $SiO_2{\cdot}B_2O_3$

Search Result 62, Processing Time 0.027 seconds

Study of Basic Properties to Develope SiC Ceramic Heater by Self-Charge with Electricity (자기 통전식 SiC세라믹 발열체 개발을 위한 기초 특성 연구)

  • Shin, Yong-Deok;Ko, Tae-Hun;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • The composites were fabricated $\beta$-SiC and $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at $1,650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[MPa], 54.60 [GPa] and 2.84[GPa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. The electrical resistivity showed the lowest value of 0.012[${\Omega}{\cdot}cm$] for 16[wt%] at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

The Electrochemical Behavior of Ni-base Metallic Glasses Containing Cr in H2SO4 Solutions

  • Arab, Sanaa.T.;Emran, Khadijah.M.;Al-Turaif, Hamad A.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.448-458
    • /
    • 2012
  • In order to develop alloy resistance in aggressive sulphat ion, the corrosion behavior of metallic glasses $Ni_{92{\cdot}3}Si_{4.5}B_{32}$, $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ (at %) at different concentrations of $H_2SO_4$ solutions was examined by electrochemical methods and Scanning Electron Microscope (SEM) and X-ray Photoelectron Microscopy (XPS) analyses. The corrosion kinetics and passivation behavior was studied. A direct proportion was observed between the corrosion rate and acid concentration in the case of $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloys. Critical concentration was observed in the case of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ alloy. The influence of the alloying element is reflected in the increasing resistance of the protective film. XPS analysis confirms that the protection film on the $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ alloy was NiS which is less protective than that formed on Cr containing alloys. The corrosion rate of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$. alloys containing 7% and 13% Cr are $7.90-26.1{\times}10^{-3}$ mm/y which is lower about 43-54 times of the alloy $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ (free of Cr). The high resistance of $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloy at the very aggressive media may due to thicker passive film of $Cr_2O_3$ which hydrated to hydrated chromium oxyhydroxide.

Effect of the YAG with fracture toughness and electric conductive of $\beta$-Sic-$TiB_2$ ($\beta$-Sic-$TiB_2$복합체의 파괴인성과 전기전도도젠 미치는 YAG의 영향)

  • Yoon, Se-Won;Ju, Jin-Young;Shin, Yong-Deok;Yeo, Dong-Hun;Park, Ki-Yub
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1545-1547
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$TiB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density and the mechanical properties of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_3$ contents because YAG of reaction between $Al_{2}O_3$ and $Y_{2}O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism. the fracture toughness showed 7.1MPa${\cdot}m^{1/2}$. For composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature The electrical resistivity and the resistance temperature coefficient respectively showed the lowest of 6.0${\sim}10^{-4}{\Omega}{\cdot}$ cm and 3.1${\times}10^{-3}/^{\circ}C$ for composite added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of 25$^{\circ}C$ to 700$^{\circ}C$.

  • PDF

Composition and Temperature Dependence of Structural Changes in Borosilicate Glasses by Spectrometer (분광계에 의한 Borosilicate계 글라스의 조성 및 온도의존성 평가)

  • Park Sung-Je;Ryu Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.786-790
    • /
    • 2005
  • We investigated the particularity of temperature and composition changes in $xNa_2O{\cdot}(52.5-x)B_2O_3{\cdot}47.5SiO_2$ glasses by use of FT-IR, $^{11}B$ NMR, Raman spectrometer. From FT-IR and $^{11}B$ NMR spectrometer, we thought that tetrahedral boron, $BO_4$ units are created $N_4$ increasing tendency generated near $600^{\circ}C$. It's expected that composition ana heat treatment directly contributed to structural changes, this changes are following to $Na_2O$ increasing or decreasing. caused by $N_4\;and\;BO_4$ units are caused by relatively increasing or decreasing in the glasses' structure. Particularly, $BO_4$ units are converted to $BO_3$ units after $600^{\circ}C$ heat treatment for 50h in the composition of $x<18(R<0.5,\;R=Na_2O/B_2O_3\;mol\%)$. On the order hand, $BO_3$ units are converted to, $BO_4$ units after $600^{\circ}C$ heat treatment for 50h in the composition of $x{\geq}18\;(R>0.5)$. This particularity of composition and temperature dependence of structural changes are similarly represented by Raman analysis results.

Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.434-441
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

A Study on Dancheong Pigments of Old Wooden Building in Gwangju and Jeonnam, Korea (광주.전남지역 목조 고건축물에 사용된 단청안료에 대한 연구)

  • Jang, Seong-Wook;Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.269-278
    • /
    • 2010
  • We investigated characteristics of the coloring material of Dancheong pigments and hope that this study contributes the revival of traditional Dancheong pigments color. For this purpose, we collected Dancheong fragment samples that fell off naturally from old wooden buildings in Gwangju and Jeonnam and analyzed the natural coloring material by XRD and EDS-SEM analysis method. In white pigments of Dancheong fragments, it is confirmed that gypsum$(CaSO_{4}{\cdot}2H_{2}O)$, quartz$(SiO_{2})$, white lead$(PbCO_{3})$ and calcite$(CaCO_{3})$ which have been used for white pigments since ancient times and $TiO_{2}$ which is common used in modern times. In red pigments of Dancheong fragments, it is confirmed that hematite$(Fe_{2}O_{3})$ and red lead$(Pb_{3}O_{4})$, which have been used for red pigments since ancient times and C.I. pigment orange $13(C_{32}H_{24}C_{12}N_{8}O_{2})$ but there is no cinnabar(HgS) which has been used since B.C. 3000 in China. In yellow pigments of Dancheong fragments, it is confirmed that crocoite$(PbCrO_{4})$ and massicot(PbO). In blue pigments of Dancheong fragments, it is confirmed that sodalite$(Na_{4}BeAlSi_{4}O_{12}Cl)$ and nosean $(Na_{8}Al_{6}Si_{6}O_{24}SO_{4})$ as coloring material of blue pigment and C.I. pigments blue $29(Na_{7}Al_{6}Si_{6}O_{24}S_{3})$ which is used in modern times. In green pigments of Dancheong fragments, it is confirmed that calumetite$(Cu(OHCI)_{2}{\cdot}2H_{2}O)$, escolaite(Cr2O3), dichromium trioxide$(Cr_{2}O_{3})$, emerald green$(C_{2}H_{3}As_{3}Cu_{2}O_{8})$, and C.I. pigments green$(C_{32}H_{16}-XCl_{x}Cu_{8})$ which is used in modern time. In black pigments of Dancheong fragments, Chiness ink(carbon black) is confirmed.

Na Borosilicate Glass Surface Structures: A Classical Molecular Dynamics Simulations Study (소듐붕규산염 유리의 표면 구조에 대한 분자 동역학 시뮬레이션 연구)

  • Kwon, Kideok D.;Criscenti, Louise J.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.119-127
    • /
    • 2013
  • Borosilicate glass dissolution is an important chemical process that impacts the glass durability as nuclear waste form that may be used for high-level radioactive waste disposal. Experiments reported that the glass dissolution rates are strongly dependent on the bulk composition. Because some relationship exists between glass composition and molecular-structure distribution (e.g., non-bridging oxygen content of $SiO_4$ unit and averaged coordination number of B), the composition-dependent dissolution rates are attributed to the bulk structural changes corresponding to the compositional variation. We examined Na borosilicate glass structures by performing classical molecular dynamics (MD) simulations for four different chemical compositions ($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$). Our MD simulations demonstrate that glass surfaces have significantly different chemical compositions and structures from the bulk glasses. Because glass surfaces forming an interface with solution are most likely the first dissolution-reaction occurring areas, the current MD result simply that composition-dependent glass dissolution behaviors should be understood by surface structural change upon the chemical composition change.

Effect of Pressure on Properties of the SiC-$TiB_2$ Electroconductive Ceramic Composites (SiC-$TiB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 가압(加壓)의 영향(影響))

  • Shin, Yong-Deok;Seo, Je-Ho;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1228-1229
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressure or pressureless annealing at 1,650[$^{\circ}C$] for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ $YAG(Al_5Y_3O_{12})$. The relative density, the flexural strength and the Young's modulus showed the highest value of 88.32[%], 136.43[MPa] and 52.82[GPa] for pressure annealed SiC-$TiB_2$ composites at room temperature. The electrical resistivity showed the lowest value of 0.0162[${\Omega}{\cdot}cm$] for pressure annealed SiC-$TiB_2$ composite at 25[$^{\circ}C$]. The electrical resistivity of the pressure annealed SiC-$TiB_2$ composite was positive temperature coefficient resistance (PTCR) but the electrical resistivity of the pressureless annealed SiC-$TiB_2$ composites was negative temperature coefficient resistance(NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

Effect of Binder Glass Crystallization on Electrical Properties in $RuO_2$-Thick Film Resistor

  • Sungmin Kwon;Kim, Cheol-Young
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 1996
  • In thick film resistors, the characteristics of the frit and the reaction between glass frit and conductor material play an important role for their electrical properties. In this study, various glass frits in the system of $60RO{\cdot}20SiO_2$ $15B_2O_3{\cdot}5Al_2O_3$(RO=PbO, ZnO, CdO; mole%) were mixed with $RuO_2$ and coated on 96% alumina substrate. Only the glass frit containing PbO was reacted with $RuO_2$in$RuO_{2+}$-thick film resistor and produced the new crystalline phase of $Pb_2Ru_2O_{65}$. Their electrical resistivities strongly depend on the amount of $Pb_2Ru_2O_{65}$ crystalline phase obtained, which varied with firing temperature. The sheet resistivities of these resistors were varied from $10^3\; to\; 10^6\;{\Omega}/{\Box}$ depending on heat treatment, and the absolute value of TCR was decreased as the heat treatment temperature increaed. However, $RuO_2$ did not reacted with the glass frits containing ZnO nor CdO, and the resulting showed very high sheet resistivities.

  • PDF

Properties of ${\beta}$-SiC-$TiB_2$ Electrocondutive Ceramic Composites by Spray Dry (Spray Dry한 ${\beta}$-SiC-$TiB_2$ 도전성(導電性) 세라믹 복합체(複合體)의 특성(特性))

  • Shin, Yong-Deok;Ju, Jing-Young;Choi, Kwang-Soo;Oh, Sang-Soo;Lee, Dong-Yoon;Yim, Seung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1538-1540
    • /
    • 2003
  • The composites were fabricated respectively 61vol.% ${\beta}$-SiC and 39vol.% $TiB_2$ spray-dried powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at $1700^{\circ}C,\;1750^{\circ}C\;1800^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density, the Young's modulus and fracture toughness showed respectively the highest value of 92.97%, 92.88Gpa and $4.4Mpa{\cdot}m^{1/2}$ for composites by pressureless annealing temperature $1700^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of $8.09{\times}10^{-3}{\Omega}{\cdot}cm$ for composite by pressureless annealing tempe rature $1700^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the SiC-$TiB_2$ composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF